Системний підхід до моделювання та прогнозування на основі регресійних моделей і фільтра Калмана

Запропоновано концепцію адаптивного моделювання фінансово-економічних процесів, яка ґрунтується на одночасному використанні регресійних моделей і оптимального фільтра Калмана для зменшення впливу випадкових збурень та похибок вимірювань статистичних даних. Створено програмне забезпечення, необхідне...

Full description

Bibliographic Details
Main Authors: Irina A. Shubenkova, Svitlana K. Petrova, Petro I. Bidyuk
Format: Article
Language:Ukrainian
Published: Igor Sikorsky Kyiv Polytechnic Institute 2017-06-01
Series:Sistemnì Doslìdženâ ta Informacìjnì Tehnologìï
Subjects:
Online Access:http://journal.iasa.kpi.ua/article/view/108763
Description
Summary:Запропоновано концепцію адаптивного моделювання фінансово-економічних процесів, яка ґрунтується на одночасному використанні регресійних моделей і оптимального фільтра Калмана для зменшення впливу випадкових збурень та похибок вимірювань статистичних даних. Створено програмне забезпечення, необхідне для виконання обчислювальних експериментів. Для вибраних фінансово-економічних процесів побудовано кілька регресійних моделей, додатково перетворених у простір станів. Випробування розробленої системи прогнозування на різних вибірках фінансових та економічних даних показало, що можна досягти прийнятних значень середньої абсолютної похибки близько 5–8 % для короткострокових прогнозів. Залежно від конкретної постановки задачі використано динамічні і статичні оцінки прогнозів для отримання потрібних точних оцінок. Застосування фільтра Калмана для попереднього оброблення даних (зменшення впливу випадкових збурень та шумів вимірів) і короткострокового прогнозування дає змогу додатково зменшити кількість похибок оцінок прогнозів на 1,5–2,0 %. У подальших дослідженнях передбачається створити спеціалізовану систему підтримання прийняття рішень для розв’язання задач прогнозування на основі ймовірнісно-статистичних методів.
ISSN:1681-6048
2308-8893