Summary: | This paper proposes a new algorithm for adaptive deep image compression (DIC) that can compress images for different purposes or contexts at different rates. The algorithm can compress images with semantic awareness, which means classification-related semantic features are better protected in lossy image compression. It builds on the existing conditional encoder-based DIC method and adds two features: a model-based rate-distortion-classification-perception (RDCP) framework to control the trade-off between rate and performance for different contexts, and a mechanism to generate coding conditions based on image complexity and semantic importance. The algorithm outperforms the QMAP2021 benchmark on the ImageNet dataset. Over the tested rate range, it improves the classification accuracy by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>11</mn><mo>%</mo></mrow></semantics></math></inline-formula> and the perceptual quality by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>12.4</mn><mo>%</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>32</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.3</mn><mo>%</mo></mrow></semantics></math></inline-formula> on average for NIQE, LPIPS, and FSIM metrics, respectively.
|