Novel Texture Feature Descriptors Based on Multi-Fractal Analysis and LBP for Classifying Breast Density in Mammograms

This paper investigates the usefulness of multi-fractal analysis and local binary patterns (LBP) as texture descriptors for classifying mammogram images into different breast density categories. Multi-fractal analysis is also used in the pre-processing step to segment the region of interest (ROI). W...

Full description

Bibliographic Details
Main Authors: Haipeng Li, Ramakrishnan Mukundan, Shelley Boyd
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Journal of Imaging
Subjects:
Online Access:https://www.mdpi.com/2313-433X/7/10/205
Description
Summary:This paper investigates the usefulness of multi-fractal analysis and local binary patterns (LBP) as texture descriptors for classifying mammogram images into different breast density categories. Multi-fractal analysis is also used in the pre-processing step to segment the region of interest (ROI). We use four multi-fractal measures and the LBP method to extract texture features, and to compare their classification performance in experiments. In addition, a feature descriptor combining multi-fractal features and multi-resolution LBP (MLBP) features is proposed and evaluated in this study to improve classification accuracy. An autoencoder network and principal component analysis (PCA) are used for reducing feature redundancy in the classification model. A full field digital mammogram (FFDM) dataset, INBreast, which contains 409 mammogram images, is used in our experiment. BI-RADS density labels given by radiologists are used as the ground truth to evaluate the classification results using the proposed methods. Experimental results show that the proposed feature descriptor based on multi-fractal features and LBP result in higher classification accuracy than using individual texture feature sets.
ISSN:2313-433X