The Inverse Weber Problem on the Plane and the Sphere

Weber’s inverse problem in the plane is to modify the positive weights associated with <i>n</i> fixed points in the plane at minimum cost, ensuring that a given point a priori becomes the Euclidean weighted geometric median. In this paper, we investigate Weber’s inverse problem in the pl...

Full description

Bibliographic Details
Main Authors: Franco Rubio-López, Obidio Rubio, Rolando Urtecho Vidaurre
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/24/5000
_version_ 1797380156482912256
author Franco Rubio-López
Obidio Rubio
Rolando Urtecho Vidaurre
author_facet Franco Rubio-López
Obidio Rubio
Rolando Urtecho Vidaurre
author_sort Franco Rubio-López
collection DOAJ
description Weber’s inverse problem in the plane is to modify the positive weights associated with <i>n</i> fixed points in the plane at minimum cost, ensuring that a given point a priori becomes the Euclidean weighted geometric median. In this paper, we investigate Weber’s inverse problem in the plane and generalize it to the surface of the sphere. Our study uses a subspace orthogonal to a subspace generated by two vectors <i>X</i> and <i>Y</i> associated with the given points and weights. The main achievement of our work lies in determining a vector perpendicular to the vectors <i>X</i> and <i>Y</i>, in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></semantics></math></inline-formula>; which is used to determinate a solution of Weber’s inverse problem. In addition, lower bounds are obtained for the minimum of the Weber function, and an upper bound for the difference of the minimal of Weber’s direct and inverse problems. Examples of application at the plane and unit sphere are given.
first_indexed 2024-03-08T20:34:14Z
format Article
id doaj.art-cf94141311484cce83d370595089ef27
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-08T20:34:14Z
publishDate 2023-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-cf94141311484cce83d370595089ef272023-12-22T14:23:33ZengMDPI AGMathematics2227-73902023-12-011124500010.3390/math11245000The Inverse Weber Problem on the Plane and the SphereFranco Rubio-López0Obidio Rubio1Rolando Urtecho Vidaurre2Instituto de Investigación en Matemáticas, Departamento de Matemáticas, Universidad Nacional de Trujillo, Trujillo 13001, PeruInstituto de Investigación en Matemáticas, Departamento de Matemáticas, Universidad Nacional de Trujillo, Trujillo 13001, PeruInstituto de Investigación en Matemáticas, Departamento de Matemáticas, Universidad Nacional de Trujillo, Trujillo 13001, PeruWeber’s inverse problem in the plane is to modify the positive weights associated with <i>n</i> fixed points in the plane at minimum cost, ensuring that a given point a priori becomes the Euclidean weighted geometric median. In this paper, we investigate Weber’s inverse problem in the plane and generalize it to the surface of the sphere. Our study uses a subspace orthogonal to a subspace generated by two vectors <i>X</i> and <i>Y</i> associated with the given points and weights. The main achievement of our work lies in determining a vector perpendicular to the vectors <i>X</i> and <i>Y</i>, in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></semantics></math></inline-formula>; which is used to determinate a solution of Weber’s inverse problem. In addition, lower bounds are obtained for the minimum of the Weber function, and an upper bound for the difference of the minimal of Weber’s direct and inverse problems. Examples of application at the plane and unit sphere are given.https://www.mdpi.com/2227-7390/11/24/5000Weber’s problemWeber’s inverse problemlocation of servicesorthogonal space
spellingShingle Franco Rubio-López
Obidio Rubio
Rolando Urtecho Vidaurre
The Inverse Weber Problem on the Plane and the Sphere
Mathematics
Weber’s problem
Weber’s inverse problem
location of services
orthogonal space
title The Inverse Weber Problem on the Plane and the Sphere
title_full The Inverse Weber Problem on the Plane and the Sphere
title_fullStr The Inverse Weber Problem on the Plane and the Sphere
title_full_unstemmed The Inverse Weber Problem on the Plane and the Sphere
title_short The Inverse Weber Problem on the Plane and the Sphere
title_sort inverse weber problem on the plane and the sphere
topic Weber’s problem
Weber’s inverse problem
location of services
orthogonal space
url https://www.mdpi.com/2227-7390/11/24/5000
work_keys_str_mv AT francorubiolopez theinverseweberproblemontheplaneandthesphere
AT obidiorubio theinverseweberproblemontheplaneandthesphere
AT rolandourtechovidaurre theinverseweberproblemontheplaneandthesphere
AT francorubiolopez inverseweberproblemontheplaneandthesphere
AT obidiorubio inverseweberproblemontheplaneandthesphere
AT rolandourtechovidaurre inverseweberproblemontheplaneandthesphere