A Family of Higher Order Scheme for Multiple Roots

We have developed a two-point iterative scheme for multiple roots that achieves fifth order convergence by using two function evaluations and two derivative evaluations each iteration. Weight function approach is utilized to frame the scheme. The weight function named as <inline-formula><ma...

Full description

Bibliographic Details
Main Authors: Tajinder Singh, Himani Arora, Lorentz Jäntschi
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/1/228
_version_ 1797436847102623744
author Tajinder Singh
Himani Arora
Lorentz Jäntschi
author_facet Tajinder Singh
Himani Arora
Lorentz Jäntschi
author_sort Tajinder Singh
collection DOAJ
description We have developed a two-point iterative scheme for multiple roots that achieves fifth order convergence by using two function evaluations and two derivative evaluations each iteration. Weight function approach is utilized to frame the scheme. The weight function named as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mo>(</mo><msub><mi>υ</mi><mi>t</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> is used, which is a function of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>υ</mi><mi>t</mi></msub></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>υ</mi><mi>t</mi></msub></semantics></math></inline-formula> is a function of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ω</mi><mi>t</mi></msub></semantics></math></inline-formula>, i.e., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>υ</mi><mi>t</mi></msub><mo>=</mo><mfrac><msub><mi>ω</mi><mi>t</mi></msub><mrow><mn>1</mn><mo>+</mo><mi>a</mi><msub><mi>ω</mi><mi>t</mi></msub></mrow></mfrac><mo>,</mo></mrow></semantics></math></inline-formula> where <i>a</i> is a real number and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ω</mi><mi>t</mi></msub><mo>=</mo><msup><mfenced separators="" open="(" close=")"><mfrac><mrow><mi>g</mi><mo>(</mo><msub><mi mathvariant="monospace">y</mi><mi>t</mi></msub><mo>)</mo></mrow><mrow><mi>g</mi><mo>(</mo><msub><mi mathvariant="monospace">x</mi><mi>t</mi></msub><mo>)</mo></mrow></mfrac></mfenced><mfrac><mn>1</mn><mover accent="true"><mi>m</mi><mo stretchy="false">˜</mo></mover></mfrac></msup></mrow></semantics></math></inline-formula> is a multi-valued function. The consistency of the newly generated methods is ensured numerically and through the basins of attraction. Four complex functions are considered to compare the new methods with existing schemes via basins of attraction, and all provided basins of attraction possess reflection symmetry. Further, five numerical examples are used to verify the theoretical results and to contrast the presented schemes with some recognized schemes of fifth order. The results obtained have proved that the new schemes are better than the existing schemes of the same nature.
first_indexed 2024-03-09T11:07:32Z
format Article
id doaj.art-cfaedee9e6b747b5ae55c261f3bac5ae
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-09T11:07:32Z
publishDate 2023-01-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-cfaedee9e6b747b5ae55c261f3bac5ae2023-12-01T00:53:48ZengMDPI AGSymmetry2073-89942023-01-0115122810.3390/sym15010228A Family of Higher Order Scheme for Multiple RootsTajinder Singh0Himani Arora1Lorentz Jäntschi2Department of Mathematics, Guru Nanak Dev University, Amritsar 143005, Punjab, IndiaDepartment of Mathematics, Guru Nanak Dev University, Amritsar 143005, Punjab, IndiaInstitute of Doctoral Studies, Babeş-Bolyai University, 400084 Cluj-Napoca, RomaniaWe have developed a two-point iterative scheme for multiple roots that achieves fifth order convergence by using two function evaluations and two derivative evaluations each iteration. Weight function approach is utilized to frame the scheme. The weight function named as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mo>(</mo><msub><mi>υ</mi><mi>t</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> is used, which is a function of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>υ</mi><mi>t</mi></msub></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>υ</mi><mi>t</mi></msub></semantics></math></inline-formula> is a function of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ω</mi><mi>t</mi></msub></semantics></math></inline-formula>, i.e., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>υ</mi><mi>t</mi></msub><mo>=</mo><mfrac><msub><mi>ω</mi><mi>t</mi></msub><mrow><mn>1</mn><mo>+</mo><mi>a</mi><msub><mi>ω</mi><mi>t</mi></msub></mrow></mfrac><mo>,</mo></mrow></semantics></math></inline-formula> where <i>a</i> is a real number and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ω</mi><mi>t</mi></msub><mo>=</mo><msup><mfenced separators="" open="(" close=")"><mfrac><mrow><mi>g</mi><mo>(</mo><msub><mi mathvariant="monospace">y</mi><mi>t</mi></msub><mo>)</mo></mrow><mrow><mi>g</mi><mo>(</mo><msub><mi mathvariant="monospace">x</mi><mi>t</mi></msub><mo>)</mo></mrow></mfrac></mfenced><mfrac><mn>1</mn><mover accent="true"><mi>m</mi><mo stretchy="false">˜</mo></mover></mfrac></msup></mrow></semantics></math></inline-formula> is a multi-valued function. The consistency of the newly generated methods is ensured numerically and through the basins of attraction. Four complex functions are considered to compare the new methods with existing schemes via basins of attraction, and all provided basins of attraction possess reflection symmetry. Further, five numerical examples are used to verify the theoretical results and to contrast the presented schemes with some recognized schemes of fifth order. The results obtained have proved that the new schemes are better than the existing schemes of the same nature.https://www.mdpi.com/2073-8994/15/1/228nonlinear equationsmultiple rootsNewton–Raphson’s methoditerative methods
spellingShingle Tajinder Singh
Himani Arora
Lorentz Jäntschi
A Family of Higher Order Scheme for Multiple Roots
Symmetry
nonlinear equations
multiple roots
Newton–Raphson’s method
iterative methods
title A Family of Higher Order Scheme for Multiple Roots
title_full A Family of Higher Order Scheme for Multiple Roots
title_fullStr A Family of Higher Order Scheme for Multiple Roots
title_full_unstemmed A Family of Higher Order Scheme for Multiple Roots
title_short A Family of Higher Order Scheme for Multiple Roots
title_sort family of higher order scheme for multiple roots
topic nonlinear equations
multiple roots
Newton–Raphson’s method
iterative methods
url https://www.mdpi.com/2073-8994/15/1/228
work_keys_str_mv AT tajindersingh afamilyofhigherorderschemeformultipleroots
AT himaniarora afamilyofhigherorderschemeformultipleroots
AT lorentzjantschi afamilyofhigherorderschemeformultipleroots
AT tajindersingh familyofhigherorderschemeformultipleroots
AT himaniarora familyofhigherorderschemeformultipleroots
AT lorentzjantschi familyofhigherorderschemeformultipleroots