A Stochastic Approach to Integrating Electrical Thermal Storage in Distributed Demand Response for Nordic Communities With Wind Power Generation

Demand response and distributed energy storage play a crucial role in improving the efficiency and reliability of electric grids. This article describes a strategy for optimally integrating distributed energy storage units within a forward market to address space heating demand under a Stackelberg g...

Full description

Bibliographic Details
Main Authors: Juan Dominguez-Jimenez, Nilson Henao, Kodjo Agbossou, Alejandro Parrado, Javier Campillo, Shaival H. Nagarsheth
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Open Journal of Industry Applications
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10093061/
_version_ 1797838068246380544
author Juan Dominguez-Jimenez
Nilson Henao
Kodjo Agbossou
Alejandro Parrado
Javier Campillo
Shaival H. Nagarsheth
author_facet Juan Dominguez-Jimenez
Nilson Henao
Kodjo Agbossou
Alejandro Parrado
Javier Campillo
Shaival H. Nagarsheth
author_sort Juan Dominguez-Jimenez
collection DOAJ
description Demand response and distributed energy storage play a crucial role in improving the efficiency and reliability of electric grids. This article describes a strategy for optimally integrating distributed energy storage units within a forward market to address space heating demand under a Stackelberg game in isolated microgrids. The proposed strategy performs distributed management in an offline fashion through proximal decomposition methods. It leverages stochastic programming to consider user flexibility degree and wind power generation uncertainties. Also, flexibility for demand response is realized through electric thermal storage (ETS). The performance of the proposed strategy is evaluated via simulation studies carried out through a case study in Kuujjuaq, Quebec. Ten residential agents compose the demand side, each with flexibility levels and economic preferences. The simulation results show that adapting ETS results in economic savings for the customers. Those benefits increased in the presence of wind power, from 25% to 40% on average. Likewise, coordinated strategies led the coordinator to obtain reduced operational costs and peak-to-average ratio by over 35% and 56%, respectively. The proposed approach reveals that optimal coordination of ETS in the presence of dynamic tariffs can reduce diesel consumption, maximize renewable production and reduce grid stress.
first_indexed 2024-04-09T15:34:53Z
format Article
id doaj.art-cfb809d3dfba4b92a00dbe7053dc8652
institution Directory Open Access Journal
issn 2644-1241
language English
last_indexed 2024-04-09T15:34:53Z
publishDate 2023-01-01
publisher IEEE
record_format Article
series IEEE Open Journal of Industry Applications
spelling doaj.art-cfb809d3dfba4b92a00dbe7053dc86522023-04-27T23:00:55ZengIEEEIEEE Open Journal of Industry Applications2644-12412023-01-01412113810.1109/OJIA.2023.326465110093061A Stochastic Approach to Integrating Electrical Thermal Storage in Distributed Demand Response for Nordic Communities With Wind Power GenerationJuan Dominguez-Jimenez0https://orcid.org/0000-0002-4189-9054Nilson Henao1https://orcid.org/0000-0002-1286-2869Kodjo Agbossou2https://orcid.org/0000-0003-1441-424XAlejandro Parrado3https://orcid.org/0000-0002-6217-4765Javier Campillo4https://orcid.org/0000-0003-1001-2489Shaival H. Nagarsheth5https://orcid.org/0000-0001-9867-8167Laboratoire d'innovation et de recherche en énergie intelligente (LIREI), Institut de recherche sur l'hydrogène (IRH), Université du Québec à Trois-Rivières, Trois-Rivières, QC, CanadaLaboratoire d'innovation et de recherche en énergie intelligente (LIREI), Institut de recherche sur l'hydrogène (IRH), Université du Québec à Trois-Rivières, Trois-Rivières, QC, CanadaLaboratoire d'innovation et de recherche en énergie intelligente (LIREI), Institut de recherche sur l'hydrogène (IRH), Université du Québec à Trois-Rivières, Trois-Rivières, QC, CanadaLaboratoire d'innovation et de recherche en énergie intelligente (LIREI), Institut de recherche sur l'hydrogène (IRH), Université du Québec à Trois-Rivières, Trois-Rivières, QC, CanadaFacultad de Ingeniería, Universidad Tecnológica de Bolívar, Cartagena de Indias, ColombiaLaboratoire d'innovation et de recherche en énergie intelligente (LIREI), Institut de recherche sur l'hydrogène (IRH), Université du Québec à Trois-Rivières, Trois-Rivières, QC, CanadaDemand response and distributed energy storage play a crucial role in improving the efficiency and reliability of electric grids. This article describes a strategy for optimally integrating distributed energy storage units within a forward market to address space heating demand under a Stackelberg game in isolated microgrids. The proposed strategy performs distributed management in an offline fashion through proximal decomposition methods. It leverages stochastic programming to consider user flexibility degree and wind power generation uncertainties. Also, flexibility for demand response is realized through electric thermal storage (ETS). The performance of the proposed strategy is evaluated via simulation studies carried out through a case study in Kuujjuaq, Quebec. Ten residential agents compose the demand side, each with flexibility levels and economic preferences. The simulation results show that adapting ETS results in economic savings for the customers. Those benefits increased in the presence of wind power, from 25% to 40% on average. Likewise, coordinated strategies led the coordinator to obtain reduced operational costs and peak-to-average ratio by over 35% and 56%, respectively. The proposed approach reveals that optimal coordination of ETS in the presence of dynamic tariffs can reduce diesel consumption, maximize renewable production and reduce grid stress.https://ieeexplore.ieee.org/document/10093061/Electric thermal storage (ETS)distributed demand response (DR)stochastic programmingmicrogridsco-simulation
spellingShingle Juan Dominguez-Jimenez
Nilson Henao
Kodjo Agbossou
Alejandro Parrado
Javier Campillo
Shaival H. Nagarsheth
A Stochastic Approach to Integrating Electrical Thermal Storage in Distributed Demand Response for Nordic Communities With Wind Power Generation
IEEE Open Journal of Industry Applications
Electric thermal storage (ETS)
distributed demand response (DR)
stochastic programming
microgrids
co-simulation
title A Stochastic Approach to Integrating Electrical Thermal Storage in Distributed Demand Response for Nordic Communities With Wind Power Generation
title_full A Stochastic Approach to Integrating Electrical Thermal Storage in Distributed Demand Response for Nordic Communities With Wind Power Generation
title_fullStr A Stochastic Approach to Integrating Electrical Thermal Storage in Distributed Demand Response for Nordic Communities With Wind Power Generation
title_full_unstemmed A Stochastic Approach to Integrating Electrical Thermal Storage in Distributed Demand Response for Nordic Communities With Wind Power Generation
title_short A Stochastic Approach to Integrating Electrical Thermal Storage in Distributed Demand Response for Nordic Communities With Wind Power Generation
title_sort stochastic approach to integrating electrical thermal storage in distributed demand response for nordic communities with wind power generation
topic Electric thermal storage (ETS)
distributed demand response (DR)
stochastic programming
microgrids
co-simulation
url https://ieeexplore.ieee.org/document/10093061/
work_keys_str_mv AT juandominguezjimenez astochasticapproachtointegratingelectricalthermalstorageindistributeddemandresponsefornordiccommunitieswithwindpowergeneration
AT nilsonhenao astochasticapproachtointegratingelectricalthermalstorageindistributeddemandresponsefornordiccommunitieswithwindpowergeneration
AT kodjoagbossou astochasticapproachtointegratingelectricalthermalstorageindistributeddemandresponsefornordiccommunitieswithwindpowergeneration
AT alejandroparrado astochasticapproachtointegratingelectricalthermalstorageindistributeddemandresponsefornordiccommunitieswithwindpowergeneration
AT javiercampillo astochasticapproachtointegratingelectricalthermalstorageindistributeddemandresponsefornordiccommunitieswithwindpowergeneration
AT shaivalhnagarsheth astochasticapproachtointegratingelectricalthermalstorageindistributeddemandresponsefornordiccommunitieswithwindpowergeneration
AT juandominguezjimenez stochasticapproachtointegratingelectricalthermalstorageindistributeddemandresponsefornordiccommunitieswithwindpowergeneration
AT nilsonhenao stochasticapproachtointegratingelectricalthermalstorageindistributeddemandresponsefornordiccommunitieswithwindpowergeneration
AT kodjoagbossou stochasticapproachtointegratingelectricalthermalstorageindistributeddemandresponsefornordiccommunitieswithwindpowergeneration
AT alejandroparrado stochasticapproachtointegratingelectricalthermalstorageindistributeddemandresponsefornordiccommunitieswithwindpowergeneration
AT javiercampillo stochasticapproachtointegratingelectricalthermalstorageindistributeddemandresponsefornordiccommunitieswithwindpowergeneration
AT shaivalhnagarsheth stochasticapproachtointegratingelectricalthermalstorageindistributeddemandresponsefornordiccommunitieswithwindpowergeneration