A Stochastic Approach to Integrating Electrical Thermal Storage in Distributed Demand Response for Nordic Communities With Wind Power Generation
Demand response and distributed energy storage play a crucial role in improving the efficiency and reliability of electric grids. This article describes a strategy for optimally integrating distributed energy storage units within a forward market to address space heating demand under a Stackelberg g...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2023-01-01
|
Series: | IEEE Open Journal of Industry Applications |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10093061/ |
_version_ | 1797838068246380544 |
---|---|
author | Juan Dominguez-Jimenez Nilson Henao Kodjo Agbossou Alejandro Parrado Javier Campillo Shaival H. Nagarsheth |
author_facet | Juan Dominguez-Jimenez Nilson Henao Kodjo Agbossou Alejandro Parrado Javier Campillo Shaival H. Nagarsheth |
author_sort | Juan Dominguez-Jimenez |
collection | DOAJ |
description | Demand response and distributed energy storage play a crucial role in improving the efficiency and reliability of electric grids. This article describes a strategy for optimally integrating distributed energy storage units within a forward market to address space heating demand under a Stackelberg game in isolated microgrids. The proposed strategy performs distributed management in an offline fashion through proximal decomposition methods. It leverages stochastic programming to consider user flexibility degree and wind power generation uncertainties. Also, flexibility for demand response is realized through electric thermal storage (ETS). The performance of the proposed strategy is evaluated via simulation studies carried out through a case study in Kuujjuaq, Quebec. Ten residential agents compose the demand side, each with flexibility levels and economic preferences. The simulation results show that adapting ETS results in economic savings for the customers. Those benefits increased in the presence of wind power, from 25% to 40% on average. Likewise, coordinated strategies led the coordinator to obtain reduced operational costs and peak-to-average ratio by over 35% and 56%, respectively. The proposed approach reveals that optimal coordination of ETS in the presence of dynamic tariffs can reduce diesel consumption, maximize renewable production and reduce grid stress. |
first_indexed | 2024-04-09T15:34:53Z |
format | Article |
id | doaj.art-cfb809d3dfba4b92a00dbe7053dc8652 |
institution | Directory Open Access Journal |
issn | 2644-1241 |
language | English |
last_indexed | 2024-04-09T15:34:53Z |
publishDate | 2023-01-01 |
publisher | IEEE |
record_format | Article |
series | IEEE Open Journal of Industry Applications |
spelling | doaj.art-cfb809d3dfba4b92a00dbe7053dc86522023-04-27T23:00:55ZengIEEEIEEE Open Journal of Industry Applications2644-12412023-01-01412113810.1109/OJIA.2023.326465110093061A Stochastic Approach to Integrating Electrical Thermal Storage in Distributed Demand Response for Nordic Communities With Wind Power GenerationJuan Dominguez-Jimenez0https://orcid.org/0000-0002-4189-9054Nilson Henao1https://orcid.org/0000-0002-1286-2869Kodjo Agbossou2https://orcid.org/0000-0003-1441-424XAlejandro Parrado3https://orcid.org/0000-0002-6217-4765Javier Campillo4https://orcid.org/0000-0003-1001-2489Shaival H. Nagarsheth5https://orcid.org/0000-0001-9867-8167Laboratoire d'innovation et de recherche en énergie intelligente (LIREI), Institut de recherche sur l'hydrogène (IRH), Université du Québec à Trois-Rivières, Trois-Rivières, QC, CanadaLaboratoire d'innovation et de recherche en énergie intelligente (LIREI), Institut de recherche sur l'hydrogène (IRH), Université du Québec à Trois-Rivières, Trois-Rivières, QC, CanadaLaboratoire d'innovation et de recherche en énergie intelligente (LIREI), Institut de recherche sur l'hydrogène (IRH), Université du Québec à Trois-Rivières, Trois-Rivières, QC, CanadaLaboratoire d'innovation et de recherche en énergie intelligente (LIREI), Institut de recherche sur l'hydrogène (IRH), Université du Québec à Trois-Rivières, Trois-Rivières, QC, CanadaFacultad de Ingeniería, Universidad Tecnológica de Bolívar, Cartagena de Indias, ColombiaLaboratoire d'innovation et de recherche en énergie intelligente (LIREI), Institut de recherche sur l'hydrogène (IRH), Université du Québec à Trois-Rivières, Trois-Rivières, QC, CanadaDemand response and distributed energy storage play a crucial role in improving the efficiency and reliability of electric grids. This article describes a strategy for optimally integrating distributed energy storage units within a forward market to address space heating demand under a Stackelberg game in isolated microgrids. The proposed strategy performs distributed management in an offline fashion through proximal decomposition methods. It leverages stochastic programming to consider user flexibility degree and wind power generation uncertainties. Also, flexibility for demand response is realized through electric thermal storage (ETS). The performance of the proposed strategy is evaluated via simulation studies carried out through a case study in Kuujjuaq, Quebec. Ten residential agents compose the demand side, each with flexibility levels and economic preferences. The simulation results show that adapting ETS results in economic savings for the customers. Those benefits increased in the presence of wind power, from 25% to 40% on average. Likewise, coordinated strategies led the coordinator to obtain reduced operational costs and peak-to-average ratio by over 35% and 56%, respectively. The proposed approach reveals that optimal coordination of ETS in the presence of dynamic tariffs can reduce diesel consumption, maximize renewable production and reduce grid stress.https://ieeexplore.ieee.org/document/10093061/Electric thermal storage (ETS)distributed demand response (DR)stochastic programmingmicrogridsco-simulation |
spellingShingle | Juan Dominguez-Jimenez Nilson Henao Kodjo Agbossou Alejandro Parrado Javier Campillo Shaival H. Nagarsheth A Stochastic Approach to Integrating Electrical Thermal Storage in Distributed Demand Response for Nordic Communities With Wind Power Generation IEEE Open Journal of Industry Applications Electric thermal storage (ETS) distributed demand response (DR) stochastic programming microgrids co-simulation |
title | A Stochastic Approach to Integrating Electrical Thermal Storage in Distributed Demand Response for Nordic Communities With Wind Power Generation |
title_full | A Stochastic Approach to Integrating Electrical Thermal Storage in Distributed Demand Response for Nordic Communities With Wind Power Generation |
title_fullStr | A Stochastic Approach to Integrating Electrical Thermal Storage in Distributed Demand Response for Nordic Communities With Wind Power Generation |
title_full_unstemmed | A Stochastic Approach to Integrating Electrical Thermal Storage in Distributed Demand Response for Nordic Communities With Wind Power Generation |
title_short | A Stochastic Approach to Integrating Electrical Thermal Storage in Distributed Demand Response for Nordic Communities With Wind Power Generation |
title_sort | stochastic approach to integrating electrical thermal storage in distributed demand response for nordic communities with wind power generation |
topic | Electric thermal storage (ETS) distributed demand response (DR) stochastic programming microgrids co-simulation |
url | https://ieeexplore.ieee.org/document/10093061/ |
work_keys_str_mv | AT juandominguezjimenez astochasticapproachtointegratingelectricalthermalstorageindistributeddemandresponsefornordiccommunitieswithwindpowergeneration AT nilsonhenao astochasticapproachtointegratingelectricalthermalstorageindistributeddemandresponsefornordiccommunitieswithwindpowergeneration AT kodjoagbossou astochasticapproachtointegratingelectricalthermalstorageindistributeddemandresponsefornordiccommunitieswithwindpowergeneration AT alejandroparrado astochasticapproachtointegratingelectricalthermalstorageindistributeddemandresponsefornordiccommunitieswithwindpowergeneration AT javiercampillo astochasticapproachtointegratingelectricalthermalstorageindistributeddemandresponsefornordiccommunitieswithwindpowergeneration AT shaivalhnagarsheth astochasticapproachtointegratingelectricalthermalstorageindistributeddemandresponsefornordiccommunitieswithwindpowergeneration AT juandominguezjimenez stochasticapproachtointegratingelectricalthermalstorageindistributeddemandresponsefornordiccommunitieswithwindpowergeneration AT nilsonhenao stochasticapproachtointegratingelectricalthermalstorageindistributeddemandresponsefornordiccommunitieswithwindpowergeneration AT kodjoagbossou stochasticapproachtointegratingelectricalthermalstorageindistributeddemandresponsefornordiccommunitieswithwindpowergeneration AT alejandroparrado stochasticapproachtointegratingelectricalthermalstorageindistributeddemandresponsefornordiccommunitieswithwindpowergeneration AT javiercampillo stochasticapproachtointegratingelectricalthermalstorageindistributeddemandresponsefornordiccommunitieswithwindpowergeneration AT shaivalhnagarsheth stochasticapproachtointegratingelectricalthermalstorageindistributeddemandresponsefornordiccommunitieswithwindpowergeneration |