Classic and generalized solutions of the mixed problem for wave equation with a summable potential. Part I. Classic solution of the mixed problem

The resolvent approach and the using of the idea of A. N. Krylov on the acceleration of convergence of Fourier series, the properties of a formal solution of a mixed problem for a homogeneous wave equation with a summable potential and a zero initial function are studied. This method makes it possib...

Full description

Bibliographic Details
Main Author: Kurdyumov, Vitalii Pavlovich
Format: Article
Language:English
Published: Saratov State University 2023-08-01
Series:Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
Subjects:
Online Access:https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2023/08/311-319-kurdumov.pdf
Description
Summary:The resolvent approach and the using of the idea of A. N. Krylov on the acceleration of convergence of Fourier series, the properties of a formal solution of a mixed problem for a homogeneous wave equation with a summable potential and a zero initial function are studied. This method makes it possible to obtain deep results on the convergence of a formal series with arbitrary boundary conditions and without overestimating the requirements for the smoothness of the initial data. The different-order boundary conditions considered in the article are such that the operator corresponding to the spectral problem may have an infinite set of multiple eigenvalues and their associated functions. A classical solution is obtained without overstating the requirements for the initial velocity $u'_t(x,0) = \psi(x)$. It is shown that for $\psi(x) \in L[0,1]$ the formal solution, being the uniform limit of the classical ones, is a generalized solution, and when $\psi(x) \in L_p[0,1], ~ 1 <p\leqslant 2$, the formal solution has much smoother properties than the case $\psi(x) \in L[0,1]$.
ISSN:1816-9791
2541-9005