Lower-thermosphere–ionosphere (LTI) quantities: current status of measuring techniques and models
<p>The lower-thermosphere–ionosphere (LTI) system consists of the upper atmosphere and the lower part of the ionosphere and as such comprises a complex system coupled to both the atmosphere below and space above. The atmospheric part of the LTI is dominated by laws of continuum fluid dynamics...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-02-01
|
Series: | Annales Geophysicae |
Online Access: | https://angeo.copernicus.org/articles/39/189/2021/angeo-39-189-2021.pdf |
_version_ | 1818926259480035328 |
---|---|
author | M. Palmroth M. Palmroth M. Grandin T. Sarris E. Doornbos S. Tourgaidis S. Tourgaidis A. Aikio S. Buchert M. A. Clilverd I. Dandouras R. Heelis A. Hoffmann N. Ivchenko G. Kervalishvili D. J. Knudsen A. Kotova H.-L. Liu D. M. Malaspina D. M. Malaspina G. March A. Marchaudon O. Marghitu T. Matsuo W. J. Miloch T. Moretto-Jørgensen D. Mpaloukidis N. Olsen K. Papadakis R. Pfaff P. Pirnaris C. Siemes C. Stolle C. Stolle J. Suni J. van den IJssel P. T. Verronen P. T. Verronen P. Visser M. Yamauchi |
author_facet | M. Palmroth M. Palmroth M. Grandin T. Sarris E. Doornbos S. Tourgaidis S. Tourgaidis A. Aikio S. Buchert M. A. Clilverd I. Dandouras R. Heelis A. Hoffmann N. Ivchenko G. Kervalishvili D. J. Knudsen A. Kotova H.-L. Liu D. M. Malaspina D. M. Malaspina G. March A. Marchaudon O. Marghitu T. Matsuo W. J. Miloch T. Moretto-Jørgensen D. Mpaloukidis N. Olsen K. Papadakis R. Pfaff P. Pirnaris C. Siemes C. Stolle C. Stolle J. Suni J. van den IJssel P. T. Verronen P. T. Verronen P. Visser M. Yamauchi |
author_sort | M. Palmroth |
collection | DOAJ |
description | <p>The lower-thermosphere–ionosphere (LTI) system consists of the upper atmosphere and the lower part of the ionosphere and as such comprises a complex system coupled to both the atmosphere below and space above. The atmospheric part of the LTI is dominated by laws of continuum fluid dynamics and chemistry, while the ionosphere is a plasma system controlled by electromagnetic forces driven by the magnetosphere, the solar wind, as well as the wind dynamo. The LTI is hence a domain controlled by many different physical processes. However, systematic in situ measurements within this region are severely lacking, although the LTI is located only 80 to 200 km above the surface of our planet. This paper reviews the current state of the art in measuring the LTI, either in situ or by several different remote-sensing methods. We begin by outlining the open questions within the LTI requiring high-quality in situ measurements, before reviewing directly observable parameters and their most important derivatives. The motivation for this review has arisen from the recent retention of the Daedalus mission as one among three competing mission candidates within the European Space Agency (ESA) Earth Explorer 10 Programme. However, this paper intends to cover the LTI parameters such that it can be used as a background scientific reference for any mission targeting in situ observations of the LTI.</p> |
first_indexed | 2024-12-20T02:54:17Z |
format | Article |
id | doaj.art-cfe2c3bae6e04b5097c10b6750012a54 |
institution | Directory Open Access Journal |
issn | 0992-7689 1432-0576 |
language | English |
last_indexed | 2024-12-20T02:54:17Z |
publishDate | 2021-02-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Annales Geophysicae |
spelling | doaj.art-cfe2c3bae6e04b5097c10b6750012a542022-12-21T19:55:58ZengCopernicus PublicationsAnnales Geophysicae0992-76891432-05762021-02-013918923710.5194/angeo-39-189-2021Lower-thermosphere–ionosphere (LTI) quantities: current status of measuring techniques and modelsM. Palmroth0M. Palmroth1M. Grandin2T. Sarris3E. Doornbos4S. Tourgaidis5S. Tourgaidis6A. Aikio7S. Buchert8M. A. Clilverd9I. Dandouras10R. Heelis11A. Hoffmann12N. Ivchenko13G. Kervalishvili14D. J. Knudsen15A. Kotova16H.-L. Liu17D. M. Malaspina18D. M. Malaspina19G. March20A. Marchaudon21O. Marghitu22T. Matsuo23W. J. Miloch24T. Moretto-Jørgensen25D. Mpaloukidis26N. Olsen27K. Papadakis28R. Pfaff29P. Pirnaris30C. Siemes31C. Stolle32C. Stolle33J. Suni34J. van den IJssel35P. T. Verronen36P. T. Verronen37P. Visser38M. Yamauchi39Department of Physics, University of Helsinki, Helsinki, FinlandSpace and Earth Observation Centre, Finnish Meteorological Institute, Helsinki, FinlandDepartment of Physics, University of Helsinki, Helsinki, FinlandDepartment of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, GreeceRoyal Netherlands Meteorological Institute KNMI, Utrecht, the NetherlandsDepartment of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, GreeceSpace Programmes Unit, Athena Research & Innovation Centre, Athens, GreeceSpace Physics and Astronomy Research Unit, University of Oulu, Oulu, FinlandSwedish Institute of Space Physics (IRF), Uppsala, SwedenBritish Antarctic Survey (UKRI-NERC), Cambridge, UKInstitut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, CNES, Toulouse, FranceCenter for Space Sciences, University of Texas at Dallas, Dallas, USAEuropean Space Research and Technology Centre, European Space Agency, Noordwijk, the NetherlandsDivision of Space and Plasma Physics, Royal Institute of Technology KTH, Stockholm, SwedenGFZ Potsdam, German Research Centre for Geosciences, Potsdam, GermanyDepartment of Physics and Astronomy, University of Calgary, Calgary, CanadaInstitut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, CNES, Toulouse, FranceNational Center for Atmospheric Research, Boulder, USAAstrophysical and Planetary Sciences Department, University of Colorado, Boulder, USALaboratory for Atmospheric and Space Physics, University of Colorado, Boulder, USAFaculty of Aerospace Engineering, Delft University of Technology, Delft, the NetherlandsInstitut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, CNES, Toulouse, FranceInstitute for Space Sciences, Bucharest, RomaniaAnn and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado at Boulder, Boulder, USADepartment of Physics, University of Oslo, Oslo, NorwayUniversity of Bergen, Institute of Physics and Technology, Bergen, NorwayDepartment of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, GreeceDTU Space, Technical University of Denmark, Copenhagen, DenmarkDepartment of Physics, University of Helsinki, Helsinki, FinlandHeliophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, USADepartment of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, GreeceFaculty of Aerospace Engineering, Delft University of Technology, Delft, the NetherlandsGFZ Potsdam, German Research Centre for Geosciences, Potsdam, GermanyFaculty of Science, University of Potsdam, Potsdam, GermanyDepartment of Physics, University of Helsinki, Helsinki, FinlandFaculty of Aerospace Engineering, Delft University of Technology, Delft, the NetherlandsSpace and Earth Observation Centre, Finnish Meteorological Institute, Helsinki, FinlandSodankylä Geophysical Observatory, University of Oulu, Sodankylä, FinlandFaculty of Aerospace Engineering, Delft University of Technology, Delft, the NetherlandsSwedish Institute of Space Physics (IRF), Kiruna, Sweden<p>The lower-thermosphere–ionosphere (LTI) system consists of the upper atmosphere and the lower part of the ionosphere and as such comprises a complex system coupled to both the atmosphere below and space above. The atmospheric part of the LTI is dominated by laws of continuum fluid dynamics and chemistry, while the ionosphere is a plasma system controlled by electromagnetic forces driven by the magnetosphere, the solar wind, as well as the wind dynamo. The LTI is hence a domain controlled by many different physical processes. However, systematic in situ measurements within this region are severely lacking, although the LTI is located only 80 to 200 km above the surface of our planet. This paper reviews the current state of the art in measuring the LTI, either in situ or by several different remote-sensing methods. We begin by outlining the open questions within the LTI requiring high-quality in situ measurements, before reviewing directly observable parameters and their most important derivatives. The motivation for this review has arisen from the recent retention of the Daedalus mission as one among three competing mission candidates within the European Space Agency (ESA) Earth Explorer 10 Programme. However, this paper intends to cover the LTI parameters such that it can be used as a background scientific reference for any mission targeting in situ observations of the LTI.</p>https://angeo.copernicus.org/articles/39/189/2021/angeo-39-189-2021.pdf |
spellingShingle | M. Palmroth M. Palmroth M. Grandin T. Sarris E. Doornbos S. Tourgaidis S. Tourgaidis A. Aikio S. Buchert M. A. Clilverd I. Dandouras R. Heelis A. Hoffmann N. Ivchenko G. Kervalishvili D. J. Knudsen A. Kotova H.-L. Liu D. M. Malaspina D. M. Malaspina G. March A. Marchaudon O. Marghitu T. Matsuo W. J. Miloch T. Moretto-Jørgensen D. Mpaloukidis N. Olsen K. Papadakis R. Pfaff P. Pirnaris C. Siemes C. Stolle C. Stolle J. Suni J. van den IJssel P. T. Verronen P. T. Verronen P. Visser M. Yamauchi Lower-thermosphere–ionosphere (LTI) quantities: current status of measuring techniques and models Annales Geophysicae |
title | Lower-thermosphere–ionosphere (LTI) quantities: current status of measuring techniques and models |
title_full | Lower-thermosphere–ionosphere (LTI) quantities: current status of measuring techniques and models |
title_fullStr | Lower-thermosphere–ionosphere (LTI) quantities: current status of measuring techniques and models |
title_full_unstemmed | Lower-thermosphere–ionosphere (LTI) quantities: current status of measuring techniques and models |
title_short | Lower-thermosphere–ionosphere (LTI) quantities: current status of measuring techniques and models |
title_sort | lower thermosphere ionosphere lti quantities current status of measuring techniques and models |
url | https://angeo.copernicus.org/articles/39/189/2021/angeo-39-189-2021.pdf |
work_keys_str_mv | AT mpalmroth lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT mpalmroth lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT mgrandin lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT tsarris lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT edoornbos lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT stourgaidis lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT stourgaidis lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT aaikio lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT sbuchert lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT maclilverd lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT idandouras lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT rheelis lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT ahoffmann lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT nivchenko lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT gkervalishvili lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT djknudsen lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT akotova lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT hlliu lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT dmmalaspina lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT dmmalaspina lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT gmarch lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT amarchaudon lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT omarghitu lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT tmatsuo lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT wjmiloch lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT tmorettojørgensen lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT dmpaloukidis lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT nolsen lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT kpapadakis lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT rpfaff lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT ppirnaris lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT csiemes lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT cstolle lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT cstolle lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT jsuni lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT jvandenijssel lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT ptverronen lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT ptverronen lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT pvisser lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels AT myamauchi lowerthermosphereionosphereltiquantitiescurrentstatusofmeasuringtechniquesandmodels |