Summary: | In this study, a hole transport layer (HTL)-free perovskite solar cell (PSC) structure with CH3NH3SnI3 as an active layer and TiO2 as an electron transport layer (ETL) has been proposed for the first time. The solar cell capacitance simulator in one dimension program has been carried out to design the proposed HTL-free CH3NH3SnI3-based PSC and simulate its performance. The output parameters of the proposed PSC, such as open circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), power conversion efficiency, and quantum efficiency, are evaluated by varying the physical parameters of various layers. The thermal stability of the proposed cell has also been analyzed. The thicknesses of the ETL and the absorber are optimized to be 0.05 and 1.0 µm, respectively. A conversion efficiency of 26.33% along with Voc of 0.98 V, Jsc of 31.93 mA/cm2, and an FF of 84.34% is obtained for the proposed HTL-free CH3NH3SnI3-based PSC. These simulation results would be helpful in fabricating highly efficient and inexpensive PSCs.
|