Distributed Genetic Algorithms for Low-Power, Low-Cost and Small-Sized Memory Devices

This work presents a strategy to implement a distributed form of genetic algorithm (GA) on low power, low cost, and small-sized memory aiming for increased performance and reduction of energy consumption when compared to standalone GAs. This strategy focuses on making a distributed version of GA fea...

Full description

Bibliographic Details
Main Authors: Denis R. da S. Medeiros, Marcelo A. C. Fernandes
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/9/11/1891
Description
Summary:This work presents a strategy to implement a distributed form of genetic algorithm (GA) on low power, low cost, and small-sized memory aiming for increased performance and reduction of energy consumption when compared to standalone GAs. This strategy focuses on making a distributed version of GA feasible to run as a low cost and a low power consumption embedded system utilizing devices such as 8-bit microcontrollers (µCs) and Serial Peripheral Interface (SPI) for data transmission between those devices. Details about how the distributed GA was designed from a previous standalone implementation made by the authors and how the project is structured are presented. Furthermore, this work investigates the implementation limitations and shows results about its proper operation, most of them collected with the Hardware-In-Loop (HIL) technique, and resource consumption such as memory and processing time. Finally, some scenarios are analyzed to identify where this distributed version can be utilized and how it is compared to the single-node standalone implementation in terms of performance and energy consumption.
ISSN:2079-9292