Design and Test of Stripping and Impurity Removal Device for Spring-Tooth Residual Plastic Film Collector
The residual agricultural plastic film in China is not easily recovered due to the thinness and poor mechanical properties of domestic films, and a large amount of plastic film remaining in farmland soil poses a great threat to soil quality and crop production. A spring-tooth residual plastic film c...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-12-01
|
Series: | Agriculture |
Subjects: | |
Online Access: | https://www.mdpi.com/2077-0472/13/1/42 |
_version_ | 1827629652599898112 |
---|---|
author | Qiangji Peng Kaikai Li Xiaoyu Wang Guohai Zhang Jianming Kang |
author_facet | Qiangji Peng Kaikai Li Xiaoyu Wang Guohai Zhang Jianming Kang |
author_sort | Qiangji Peng |
collection | DOAJ |
description | The residual agricultural plastic film in China is not easily recovered due to the thinness and poor mechanical properties of domestic films, and a large amount of plastic film remaining in farmland soil poses a great threat to soil quality and crop production. A spring-tooth residual plastic film collector (SRPFC) is widely used in domestic residual plastic film (RPF) recycling operations. However, there are two major problems in the current SRPFC: the low recovery rate of the residual film (RRRF) caused by the difficulty of film-stripping and the high impurity rate in the film (IRF). In this paper, a stripping and impurity removal device (SIRD) is designed to address the existing problems of SRPFC, which is mainly composed of film-stripping tooth plates (FTP), two wind-collecting hoods, and two centrifugal fans. The motion and force analysis of the RPF in the film-stripping process was carried out, and the arc FTP was determined to be used for film-stripping. The size parameters of the FTP were obtained by establishing the coordinate system to solve the differential equation. By comparing and analyzing the force of RPF in the airflow field of the test bench for suspension speed and the airflow field of the wind-collecting hood, the RPF equivalent particle was established. The discrete phase model (DPM) in Fluent software was used to simulate the movement of the RPF equivalent particle, and the calculated air volume range of the centrifugal fan was 5501.88~6829.92 m<sup>3</sup>/h. The effects of forward speed, rotating speed of film conveying chain harrow (FCCH), and rotating speed of the centrifugal fan on RRRF and IRF were studied by orthogonal rotary combination experiment. The test results showed that the best combination of machine operation parameters was when the forward speed was 5 km/h, the rotating speed of the FCCH was 235 r/min, and the rotating speed of the centrifugal fan was 1978 r/min. Under these conditions, the RRRF was 92.53%, and the IRF was 9.31%. Field experiments were carried out with the rounded parameters, and the average RRRF was 92.07%, and the average IRF was 9.56% under the parameter combination, indicating that the optimization scheme of the device was feasible. |
first_indexed | 2024-03-09T13:55:25Z |
format | Article |
id | doaj.art-cffcb54038fa4b57ad58deb96922315a |
institution | Directory Open Access Journal |
issn | 2077-0472 |
language | English |
last_indexed | 2024-03-09T13:55:25Z |
publishDate | 2022-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Agriculture |
spelling | doaj.art-cffcb54038fa4b57ad58deb96922315a2023-11-30T20:44:51ZengMDPI AGAgriculture2077-04722022-12-011314210.3390/agriculture13010042Design and Test of Stripping and Impurity Removal Device for Spring-Tooth Residual Plastic Film CollectorQiangji Peng0Kaikai Li1Xiaoyu Wang2Guohai Zhang3Jianming Kang4Shandong Academy of Agricultural Machinery Sciences, Jinan 250010, ChinaShandong Academy of Agricultural Machinery Sciences, Jinan 250010, ChinaShandong Academy of Agricultural Machinery Sciences, Jinan 250010, ChinaSchool of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, ChinaShandong Academy of Agricultural Machinery Sciences, Jinan 250010, ChinaThe residual agricultural plastic film in China is not easily recovered due to the thinness and poor mechanical properties of domestic films, and a large amount of plastic film remaining in farmland soil poses a great threat to soil quality and crop production. A spring-tooth residual plastic film collector (SRPFC) is widely used in domestic residual plastic film (RPF) recycling operations. However, there are two major problems in the current SRPFC: the low recovery rate of the residual film (RRRF) caused by the difficulty of film-stripping and the high impurity rate in the film (IRF). In this paper, a stripping and impurity removal device (SIRD) is designed to address the existing problems of SRPFC, which is mainly composed of film-stripping tooth plates (FTP), two wind-collecting hoods, and two centrifugal fans. The motion and force analysis of the RPF in the film-stripping process was carried out, and the arc FTP was determined to be used for film-stripping. The size parameters of the FTP were obtained by establishing the coordinate system to solve the differential equation. By comparing and analyzing the force of RPF in the airflow field of the test bench for suspension speed and the airflow field of the wind-collecting hood, the RPF equivalent particle was established. The discrete phase model (DPM) in Fluent software was used to simulate the movement of the RPF equivalent particle, and the calculated air volume range of the centrifugal fan was 5501.88~6829.92 m<sup>3</sup>/h. The effects of forward speed, rotating speed of film conveying chain harrow (FCCH), and rotating speed of the centrifugal fan on RRRF and IRF were studied by orthogonal rotary combination experiment. The test results showed that the best combination of machine operation parameters was when the forward speed was 5 km/h, the rotating speed of the FCCH was 235 r/min, and the rotating speed of the centrifugal fan was 1978 r/min. Under these conditions, the RRRF was 92.53%, and the IRF was 9.31%. Field experiments were carried out with the rounded parameters, and the average RRRF was 92.07%, and the average IRF was 9.56% under the parameter combination, indicating that the optimization scheme of the device was feasible.https://www.mdpi.com/2077-0472/13/1/42sustainable agricultureagricultural machineryresidual plastic film recyclingfilm impurity separationtest |
spellingShingle | Qiangji Peng Kaikai Li Xiaoyu Wang Guohai Zhang Jianming Kang Design and Test of Stripping and Impurity Removal Device for Spring-Tooth Residual Plastic Film Collector Agriculture sustainable agriculture agricultural machinery residual plastic film recycling film impurity separation test |
title | Design and Test of Stripping and Impurity Removal Device for Spring-Tooth Residual Plastic Film Collector |
title_full | Design and Test of Stripping and Impurity Removal Device for Spring-Tooth Residual Plastic Film Collector |
title_fullStr | Design and Test of Stripping and Impurity Removal Device for Spring-Tooth Residual Plastic Film Collector |
title_full_unstemmed | Design and Test of Stripping and Impurity Removal Device for Spring-Tooth Residual Plastic Film Collector |
title_short | Design and Test of Stripping and Impurity Removal Device for Spring-Tooth Residual Plastic Film Collector |
title_sort | design and test of stripping and impurity removal device for spring tooth residual plastic film collector |
topic | sustainable agriculture agricultural machinery residual plastic film recycling film impurity separation test |
url | https://www.mdpi.com/2077-0472/13/1/42 |
work_keys_str_mv | AT qiangjipeng designandtestofstrippingandimpurityremovaldeviceforspringtoothresidualplasticfilmcollector AT kaikaili designandtestofstrippingandimpurityremovaldeviceforspringtoothresidualplasticfilmcollector AT xiaoyuwang designandtestofstrippingandimpurityremovaldeviceforspringtoothresidualplasticfilmcollector AT guohaizhang designandtestofstrippingandimpurityremovaldeviceforspringtoothresidualplasticfilmcollector AT jianmingkang designandtestofstrippingandimpurityremovaldeviceforspringtoothresidualplasticfilmcollector |