ACOustic: A Nature-Inspired Exploration Indicator for Ant Colony Optimization
A statistical machine learning indicator, ACOustic, is proposed to evaluate the exploration behavior in the iterations of ant colony optimization algorithms. This idea is inspired by the behavior of some parasites in their mimicry to the queens’ acoustics of their ant hosts. The parasites’ reaction...
Autores principales: | Rafid Sagban, Ku Ruhana Ku-Mahamud, Muhamad Shahbani Abu Bakar |
---|---|
Formato: | Artículo |
Lenguaje: | English |
Publicado: |
Hindawi Limited
2015-01-01
|
Colección: | The Scientific World Journal |
Acceso en línea: | http://dx.doi.org/10.1155/2015/392345 |
Ejemplares similares
-
ACOustic: A nature-inspired exploration indicator for ant colony optimization
por: Sagban, Rafid, et al.
Publicado: (2015) -
Reactive memory model for ant colony optimization and its application to TSP
por: Sagban, Rafid, et al.
Publicado: (2014) -
Nature-inspired parameter controllers for ACO-based reactive search
por: Sagban, Rafid, et al.
Publicado: (2015) -
Reactive max-min ant system: An experimental analysis of the combination with K-OPT local searches
por: Sagban, Rafid, et al.
Publicado: (2015) -
Reactive max-min ant system with recursive local search and its application to TSP and QAP
por: Sagban, Rafid, et al.
Publicado: (2016)