BNPmix: An R Package for Bayesian Nonparametric Modeling via Pitman-Yor Mixtures
BNPmix is an R package for Bayesian nonparametric multivariate density estimation, clustering, and regression, using Pitman-Yor mixture models, a flexible and robust generalization of the popular class of Dirichlet process mixture models. A variety of model specifications and state-of-the-art poster...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Foundation for Open Access Statistics
2021-11-01
|
Series: | Journal of Statistical Software |
Subjects: | |
Online Access: | https://www.jstatsoft.org/index.php/jss/article/view/3867 |
_version_ | 1797813965038813184 |
---|---|
author | Riccardo Corradin Antonio Canale Bernardo Nipoti |
author_facet | Riccardo Corradin Antonio Canale Bernardo Nipoti |
author_sort | Riccardo Corradin |
collection | DOAJ |
description | BNPmix is an R package for Bayesian nonparametric multivariate density estimation, clustering, and regression, using Pitman-Yor mixture models, a flexible and robust generalization of the popular class of Dirichlet process mixture models. A variety of model specifications and state-of-the-art posterior samplers are implemented. In order to achieve computational efficiency, all sampling methods are written in C++ and seamless integrated into R by means of the Rcpp and RcppArmadillo packages. BNPmix exploits the ggplot2 capabilities and implements a series of generic functions to plot and print summaries of posterior densities and induced clustering of the data. |
first_indexed | 2024-03-13T08:00:31Z |
format | Article |
id | doaj.art-d021f452c6ef4d469e2932877afd7104 |
institution | Directory Open Access Journal |
issn | 1548-7660 |
language | English |
last_indexed | 2024-03-13T08:00:31Z |
publishDate | 2021-11-01 |
publisher | Foundation for Open Access Statistics |
record_format | Article |
series | Journal of Statistical Software |
spelling | doaj.art-d021f452c6ef4d469e2932877afd71042023-06-01T18:48:04ZengFoundation for Open Access StatisticsJournal of Statistical Software1548-76602021-11-0110013310.18637/jss.v100.i153680BNPmix: An R Package for Bayesian Nonparametric Modeling via Pitman-Yor MixturesRiccardo Corradin0https://orcid.org/0000-0001-5389-6873Antonio Canale1https://orcid.org/0000-0002-5403-0040Bernardo Nipoti2https://orcid.org/0000-0003-1138-951XUniversity of Milano-BicoccaUniversity of PadovaUniversity of Milano-BicoccaBNPmix is an R package for Bayesian nonparametric multivariate density estimation, clustering, and regression, using Pitman-Yor mixture models, a flexible and robust generalization of the popular class of Dirichlet process mixture models. A variety of model specifications and state-of-the-art posterior samplers are implemented. In order to achieve computational efficiency, all sampling methods are written in C++ and seamless integrated into R by means of the Rcpp and RcppArmadillo packages. BNPmix exploits the ggplot2 capabilities and implements a series of generic functions to plot and print summaries of posterior densities and induced clustering of the data.https://www.jstatsoft.org/index.php/jss/article/view/3867bayesian nonparametric mixturec density estimationclusteringimportance conditional samplerslice samplermarginal sampler |
spellingShingle | Riccardo Corradin Antonio Canale Bernardo Nipoti BNPmix: An R Package for Bayesian Nonparametric Modeling via Pitman-Yor Mixtures Journal of Statistical Software bayesian nonparametric mixture c density estimation clustering importance conditional sampler slice sampler marginal sampler |
title | BNPmix: An R Package for Bayesian Nonparametric Modeling via Pitman-Yor Mixtures |
title_full | BNPmix: An R Package for Bayesian Nonparametric Modeling via Pitman-Yor Mixtures |
title_fullStr | BNPmix: An R Package for Bayesian Nonparametric Modeling via Pitman-Yor Mixtures |
title_full_unstemmed | BNPmix: An R Package for Bayesian Nonparametric Modeling via Pitman-Yor Mixtures |
title_short | BNPmix: An R Package for Bayesian Nonparametric Modeling via Pitman-Yor Mixtures |
title_sort | bnpmix an r package for bayesian nonparametric modeling via pitman yor mixtures |
topic | bayesian nonparametric mixture c density estimation clustering importance conditional sampler slice sampler marginal sampler |
url | https://www.jstatsoft.org/index.php/jss/article/view/3867 |
work_keys_str_mv | AT riccardocorradin bnpmixanrpackageforbayesiannonparametricmodelingviapitmanyormixtures AT antoniocanale bnpmixanrpackageforbayesiannonparametricmodelingviapitmanyormixtures AT bernardonipoti bnpmixanrpackageforbayesiannonparametricmodelingviapitmanyormixtures |