Effects of ultrasound time, xanthan gum, and sucrose levels on the osmosis dehydration and appearance characteristics of grapefruit slices: Process optimization using response surface methodology
In this work, the novel use of ultrasonic pre-treatment and edible coating treatment during osmosis dehydration to optimize the weight reduction, moisture loss, sucrose gain, rehydration, and surface shrinkage using a response surface methodology (RSM) based on a central composite design (CCD) techn...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2023-08-01
|
Series: | Ultrasonics Sonochemistry |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1350417723002171 |
_version_ | 1827876891850178560 |
---|---|
author | Fakhreddin Salehi Helia Razavi Kamran Kimia Goharpour |
author_facet | Fakhreddin Salehi Helia Razavi Kamran Kimia Goharpour |
author_sort | Fakhreddin Salehi |
collection | DOAJ |
description | In this work, the novel use of ultrasonic pre-treatment and edible coating treatment during osmosis dehydration to optimize the weight reduction, moisture loss, sucrose gain, rehydration, and surface shrinkage using a response surface methodology (RSM) based on a central composite design (CCD) technique was successfully conducted on grapefruit slices. The process parameters include sonication pre-treatment time (5–10 min), xanthan-gum-based edible coating (0.1%-0.3%, w/w), and sucrose concentration (20–50 Brix), were examined and optimized for osmosis dehydration of grapefruit slices. At each step, three grapefruit slices were immersed in an ultrasonic water bath at 40 kHz, 150 W, and 20 C. Then, the sonicated slices were placed in a container contain sucrose and xanthan, and the container was put in a 50 C water-bath for 1 h. The optimum concentration of xanthan gum, sucrose, and time of treatment were predicted to be 0.15%, 20.0 Brix, and 10.0 min, respectively. Under this optimum condition, estimated values of response variables are as follows: weight reduction 14.14%, moisture loss 25.92%, solids gain 11.78%, rehydration ratio 203.40%, and shrinkage 2.90%. The weight reduction and moisture loss increased when the sonication time and sucrose concentration increased. Results demonstrated that the experimental data could be adequately fitted into a linear model with p-value ranging from 0.0001 to 0.0309 for all the variables examined. The rehydration of dried samples increased when xanthan concentration increased. Also, the weight reduction, moisture loss, sucrose absorption, and shrinkage declined with increasing in the xanthan levels. |
first_indexed | 2024-03-12T17:26:56Z |
format | Article |
id | doaj.art-d02203e2144a486e8a7b8f2dc83ff2d8 |
institution | Directory Open Access Journal |
issn | 1350-4177 |
language | English |
last_indexed | 2024-03-12T17:26:56Z |
publishDate | 2023-08-01 |
publisher | Elsevier |
record_format | Article |
series | Ultrasonics Sonochemistry |
spelling | doaj.art-d02203e2144a486e8a7b8f2dc83ff2d82023-08-05T05:15:29ZengElsevierUltrasonics Sonochemistry1350-41772023-08-0198106505Effects of ultrasound time, xanthan gum, and sucrose levels on the osmosis dehydration and appearance characteristics of grapefruit slices: Process optimization using response surface methodologyFakhreddin Salehi0Helia Razavi Kamran1Kimia Goharpour2Corresponding author.; Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, IranDepartment of Food Science and Technology, Bu-Ali Sina University, Hamedan, IranDepartment of Food Science and Technology, Bu-Ali Sina University, Hamedan, IranIn this work, the novel use of ultrasonic pre-treatment and edible coating treatment during osmosis dehydration to optimize the weight reduction, moisture loss, sucrose gain, rehydration, and surface shrinkage using a response surface methodology (RSM) based on a central composite design (CCD) technique was successfully conducted on grapefruit slices. The process parameters include sonication pre-treatment time (5–10 min), xanthan-gum-based edible coating (0.1%-0.3%, w/w), and sucrose concentration (20–50 Brix), were examined and optimized for osmosis dehydration of grapefruit slices. At each step, three grapefruit slices were immersed in an ultrasonic water bath at 40 kHz, 150 W, and 20 C. Then, the sonicated slices were placed in a container contain sucrose and xanthan, and the container was put in a 50 C water-bath for 1 h. The optimum concentration of xanthan gum, sucrose, and time of treatment were predicted to be 0.15%, 20.0 Brix, and 10.0 min, respectively. Under this optimum condition, estimated values of response variables are as follows: weight reduction 14.14%, moisture loss 25.92%, solids gain 11.78%, rehydration ratio 203.40%, and shrinkage 2.90%. The weight reduction and moisture loss increased when the sonication time and sucrose concentration increased. Results demonstrated that the experimental data could be adequately fitted into a linear model with p-value ranging from 0.0001 to 0.0309 for all the variables examined. The rehydration of dried samples increased when xanthan concentration increased. Also, the weight reduction, moisture loss, sucrose absorption, and shrinkage declined with increasing in the xanthan levels.http://www.sciencedirect.com/science/article/pii/S1350417723002171Central composite designRSMShrinkageSucrose absorptionXanthan gum |
spellingShingle | Fakhreddin Salehi Helia Razavi Kamran Kimia Goharpour Effects of ultrasound time, xanthan gum, and sucrose levels on the osmosis dehydration and appearance characteristics of grapefruit slices: Process optimization using response surface methodology Ultrasonics Sonochemistry Central composite design RSM Shrinkage Sucrose absorption Xanthan gum |
title | Effects of ultrasound time, xanthan gum, and sucrose levels on the osmosis dehydration and appearance characteristics of grapefruit slices: Process optimization using response surface methodology |
title_full | Effects of ultrasound time, xanthan gum, and sucrose levels on the osmosis dehydration and appearance characteristics of grapefruit slices: Process optimization using response surface methodology |
title_fullStr | Effects of ultrasound time, xanthan gum, and sucrose levels on the osmosis dehydration and appearance characteristics of grapefruit slices: Process optimization using response surface methodology |
title_full_unstemmed | Effects of ultrasound time, xanthan gum, and sucrose levels on the osmosis dehydration and appearance characteristics of grapefruit slices: Process optimization using response surface methodology |
title_short | Effects of ultrasound time, xanthan gum, and sucrose levels on the osmosis dehydration and appearance characteristics of grapefruit slices: Process optimization using response surface methodology |
title_sort | effects of ultrasound time xanthan gum and sucrose levels on the osmosis dehydration and appearance characteristics of grapefruit slices process optimization using response surface methodology |
topic | Central composite design RSM Shrinkage Sucrose absorption Xanthan gum |
url | http://www.sciencedirect.com/science/article/pii/S1350417723002171 |
work_keys_str_mv | AT fakhreddinsalehi effectsofultrasoundtimexanthangumandsucroselevelsontheosmosisdehydrationandappearancecharacteristicsofgrapefruitslicesprocessoptimizationusingresponsesurfacemethodology AT heliarazavikamran effectsofultrasoundtimexanthangumandsucroselevelsontheosmosisdehydrationandappearancecharacteristicsofgrapefruitslicesprocessoptimizationusingresponsesurfacemethodology AT kimiagoharpour effectsofultrasoundtimexanthangumandsucroselevelsontheosmosisdehydrationandappearancecharacteristicsofgrapefruitslicesprocessoptimizationusingresponsesurfacemethodology |