Quasi-direct Cu–Si3N4 bonding using multi-layered active metal deposition for power-module substrate

The advancement of power modules demands more reliable insulating circuit substrates. Traditional substrates, comprising Cu and Si3N4, are produced using active metal brazing (AMB). However, AMB substrates have reliability concerns owing to electrochemical migration and void formation from brazing f...

Full description

Bibliographic Details
Main Authors: Hiroaki Tatsumi, Seongjae Moon, Makoto Takahashi, Takahiro Kozawa, Eiki Tsushima, Hiroshi Nishikawa
Format: Article
Language:English
Published: Elsevier 2024-02-01
Series:Materials & Design
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0264127524000091
_version_ 1797301618321915904
author Hiroaki Tatsumi
Seongjae Moon
Makoto Takahashi
Takahiro Kozawa
Eiki Tsushima
Hiroshi Nishikawa
author_facet Hiroaki Tatsumi
Seongjae Moon
Makoto Takahashi
Takahiro Kozawa
Eiki Tsushima
Hiroshi Nishikawa
author_sort Hiroaki Tatsumi
collection DOAJ
description The advancement of power modules demands more reliable insulating circuit substrates. Traditional substrates, comprising Cu and Si3N4, are produced using active metal brazing (AMB). However, AMB substrates have reliability concerns owing to electrochemical migration and void formation from brazing filler metals. This study introduces a quasi-direct Cu–Si3N4 bonding technique using a Ti/Al bilayer active metal deposition at the bonding interface. A sputtered Ti/Al bilayer was formed on the Si3N4 surface, then heated and pressurized the sputtered Si3N4 substrate with Cu sheets in vacuum to bond each other without voids or delamination. The Ti/Al layers reacted with Si3N4 and Cu, forming a 300 nm intermediate layer. TEM observations show this layer contains segregated Ti–N and Cu–Al phases, with a good lattice match to Si3N4 and Cu–Al. Temperature-cycling tests on the Cu/Si3N4/Cu substrate revealed delamination caused by increased tensile stress at the periphery of the bonding area due to asymmetrical Cu patterns. This novel quasi-direct Cu–Si3N4 bonding technique addresses issues of electrochemical migration and void formation seen in AMB substrates, offering a reliable bonding interface for power electronic substrates.
first_indexed 2024-03-07T23:25:09Z
format Article
id doaj.art-d029dab47bb749a3a8e5ea4cf40c44bd
institution Directory Open Access Journal
issn 0264-1275
language English
last_indexed 2024-03-07T23:25:09Z
publishDate 2024-02-01
publisher Elsevier
record_format Article
series Materials & Design
spelling doaj.art-d029dab47bb749a3a8e5ea4cf40c44bd2024-02-21T05:23:52ZengElsevierMaterials & Design0264-12752024-02-01238112637Quasi-direct Cu–Si3N4 bonding using multi-layered active metal deposition for power-module substrateHiroaki Tatsumi0Seongjae Moon1Makoto Takahashi2Takahiro Kozawa3Eiki Tsushima4Hiroshi Nishikawa5Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan; Corresponding author.FJ Composite Materials Co., LTD., 2-2-3 Kashiwadai Minami, Chitose, Hokkaido 066-0009, JapanJoining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047, JapanJoining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047, JapanFJ Composite Materials Co., LTD., 2-2-3 Kashiwadai Minami, Chitose, Hokkaido 066-0009, JapanJoining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047, JapanThe advancement of power modules demands more reliable insulating circuit substrates. Traditional substrates, comprising Cu and Si3N4, are produced using active metal brazing (AMB). However, AMB substrates have reliability concerns owing to electrochemical migration and void formation from brazing filler metals. This study introduces a quasi-direct Cu–Si3N4 bonding technique using a Ti/Al bilayer active metal deposition at the bonding interface. A sputtered Ti/Al bilayer was formed on the Si3N4 surface, then heated and pressurized the sputtered Si3N4 substrate with Cu sheets in vacuum to bond each other without voids or delamination. The Ti/Al layers reacted with Si3N4 and Cu, forming a 300 nm intermediate layer. TEM observations show this layer contains segregated Ti–N and Cu–Al phases, with a good lattice match to Si3N4 and Cu–Al. Temperature-cycling tests on the Cu/Si3N4/Cu substrate revealed delamination caused by increased tensile stress at the periphery of the bonding area due to asymmetrical Cu patterns. This novel quasi-direct Cu–Si3N4 bonding technique addresses issues of electrochemical migration and void formation seen in AMB substrates, offering a reliable bonding interface for power electronic substrates.http://www.sciencedirect.com/science/article/pii/S0264127524000091Silicon nitrideCeramic insulating circuit substrateCu–Si3N4 bondingBonding interface
spellingShingle Hiroaki Tatsumi
Seongjae Moon
Makoto Takahashi
Takahiro Kozawa
Eiki Tsushima
Hiroshi Nishikawa
Quasi-direct Cu–Si3N4 bonding using multi-layered active metal deposition for power-module substrate
Materials & Design
Silicon nitride
Ceramic insulating circuit substrate
Cu–Si3N4 bonding
Bonding interface
title Quasi-direct Cu–Si3N4 bonding using multi-layered active metal deposition for power-module substrate
title_full Quasi-direct Cu–Si3N4 bonding using multi-layered active metal deposition for power-module substrate
title_fullStr Quasi-direct Cu–Si3N4 bonding using multi-layered active metal deposition for power-module substrate
title_full_unstemmed Quasi-direct Cu–Si3N4 bonding using multi-layered active metal deposition for power-module substrate
title_short Quasi-direct Cu–Si3N4 bonding using multi-layered active metal deposition for power-module substrate
title_sort quasi direct cu si3n4 bonding using multi layered active metal deposition for power module substrate
topic Silicon nitride
Ceramic insulating circuit substrate
Cu–Si3N4 bonding
Bonding interface
url http://www.sciencedirect.com/science/article/pii/S0264127524000091
work_keys_str_mv AT hiroakitatsumi quasidirectcusi3n4bondingusingmultilayeredactivemetaldepositionforpowermodulesubstrate
AT seongjaemoon quasidirectcusi3n4bondingusingmultilayeredactivemetaldepositionforpowermodulesubstrate
AT makototakahashi quasidirectcusi3n4bondingusingmultilayeredactivemetaldepositionforpowermodulesubstrate
AT takahirokozawa quasidirectcusi3n4bondingusingmultilayeredactivemetaldepositionforpowermodulesubstrate
AT eikitsushima quasidirectcusi3n4bondingusingmultilayeredactivemetaldepositionforpowermodulesubstrate
AT hiroshinishikawa quasidirectcusi3n4bondingusingmultilayeredactivemetaldepositionforpowermodulesubstrate