Study on an Optimal Strut-And-Tie Model for Concrete Deep Beams

The optimal strut-and-tie models (STMs) of two typical irregular concrete deep beams were constructed using evolutionary structural optimization and compared with those of previous studies. The reinforced concrete deep beam specimens were cast according to the reinforcement designs guided by differe...

Full description

Bibliographic Details
Main Authors: Haitao Chen, Lai Wang, Jitao Zhong
Format: Article
Language:English
Published: MDPI AG 2019-09-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/9/17/3637
Description
Summary:The optimal strut-and-tie models (STMs) of two typical irregular concrete deep beams were constructed using evolutionary structural optimization and compared with those of previous studies. The reinforced concrete deep beam specimens were cast according to the reinforcement designs guided by different STMs. Eight irregular concrete deep beam specimens were experimentally investigated under stepped loading, and the differences in the amount of steel used, the load-carrying capacity, and the failure pattern of the different specimens were analyzed. The results show that the optimal STMs proposed in this study have significant advantages in terms of cost-effectiveness and can simultaneously ensure the load-carrying capacity, delay the crack propagation of irregular concrete deep beams, and reduce the amount of steel used in structural members. Therefore, they have an important engineering application value for the reinforcement design of irregular concrete deep beams.
ISSN:2076-3417