Analisis Spektral Campuran Linier untuk Deteksi Tutupan Lahan di Daerah Perkotaan menggunakan Data Satelit Landsat ETM+ (Studi Kasus Kota Banjarbaru dan Sekitarnya)

Evaluated from remote sensing perspective, urban region is a real district heterogeneous, what gives reflectance from different some land cover type and material. The limitation of the spatial resolution from middle resolution sensor such as Landsat requires analysis at level sub-pixel. Mixture pixe...

Full description

Bibliographic Details
Main Author: Nurlina Nurlina
Format: Article
Language:English
Published: Lambung Mangkurat University Press 2017-03-01
Series:Jurnal Fisika Flux
Subjects:
Online Access:https://ppjp.ulm.ac.id/journal/index.php/f/article/view/3045
_version_ 1819019881942614016
author Nurlina Nurlina
author_facet Nurlina Nurlina
author_sort Nurlina Nurlina
collection DOAJ
description Evaluated from remote sensing perspective, urban region is a real district heterogeneous, what gives reflectance from different some land cover type and material. The limitation of the spatial resolution from middle resolution sensor such as Landsat requires analysis at level sub-pixel. Mixture pixel in remote sensing data is one of the source of error in accuracy assessment result in conventional classification. This research tries to apply Linear Spectral Mixture Analysis (LSMA) method to detect land cover change (vegetation, impervious surface, bare soil and water) at level sub-pixel in Banjarbaru City based on Landsat temporal data. LSMA is approach with analysis sub-pixel which can give information of the fraction in each pixel, so that is a potential solution to classify one pixel. Maximum Likelihood Classifier applied as comparable from LSMA. Accuracy assessment to this method use a higher spatial resolution IKONOS image. Some processing phases applied in this research to increase the accuration, are Atmospheric Correction, Minimum Noise Fraction (MNF) and Pixel Purity Index (PPI). The percentage of each land cover component in each pixel shown by fraction image from method LSMA with RMS Error average is 0,016 indicated that each endmember land cover has been dissociated well with small deviation standard. The accuration test result of abundance for each endmember using IKONOS image equal to 95%, indicates that LSMA have a high accuration to detect the endmember land cover at level sub-pixel.
first_indexed 2024-12-21T03:42:22Z
format Article
id doaj.art-d05f671ca0364434b8351cd419f0ee23
institution Directory Open Access Journal
issn 1829-796X
2541-1713
language English
last_indexed 2024-12-21T03:42:22Z
publishDate 2017-03-01
publisher Lambung Mangkurat University Press
record_format Article
series Jurnal Fisika Flux
spelling doaj.art-d05f671ca0364434b8351cd419f0ee232022-12-21T19:17:11ZengLambung Mangkurat University PressJurnal Fisika Flux1829-796X2541-17132017-03-016111610.20527/flux.v6i1.30452774Analisis Spektral Campuran Linier untuk Deteksi Tutupan Lahan di Daerah Perkotaan menggunakan Data Satelit Landsat ETM+ (Studi Kasus Kota Banjarbaru dan Sekitarnya)Nurlina Nurlina0Program Studi Fisika, FMIPA, Universitas Lambung MangkuratEvaluated from remote sensing perspective, urban region is a real district heterogeneous, what gives reflectance from different some land cover type and material. The limitation of the spatial resolution from middle resolution sensor such as Landsat requires analysis at level sub-pixel. Mixture pixel in remote sensing data is one of the source of error in accuracy assessment result in conventional classification. This research tries to apply Linear Spectral Mixture Analysis (LSMA) method to detect land cover change (vegetation, impervious surface, bare soil and water) at level sub-pixel in Banjarbaru City based on Landsat temporal data. LSMA is approach with analysis sub-pixel which can give information of the fraction in each pixel, so that is a potential solution to classify one pixel. Maximum Likelihood Classifier applied as comparable from LSMA. Accuracy assessment to this method use a higher spatial resolution IKONOS image. Some processing phases applied in this research to increase the accuration, are Atmospheric Correction, Minimum Noise Fraction (MNF) and Pixel Purity Index (PPI). The percentage of each land cover component in each pixel shown by fraction image from method LSMA with RMS Error average is 0,016 indicated that each endmember land cover has been dissociated well with small deviation standard. The accuration test result of abundance for each endmember using IKONOS image equal to 95%, indicates that LSMA have a high accuration to detect the endmember land cover at level sub-pixel.https://ppjp.ulm.ac.id/journal/index.php/f/article/view/3045mnf, ppi, endmember, linear spectral mixture analysis
spellingShingle Nurlina Nurlina
Analisis Spektral Campuran Linier untuk Deteksi Tutupan Lahan di Daerah Perkotaan menggunakan Data Satelit Landsat ETM+ (Studi Kasus Kota Banjarbaru dan Sekitarnya)
Jurnal Fisika Flux
mnf, ppi, endmember, linear spectral mixture analysis
title Analisis Spektral Campuran Linier untuk Deteksi Tutupan Lahan di Daerah Perkotaan menggunakan Data Satelit Landsat ETM+ (Studi Kasus Kota Banjarbaru dan Sekitarnya)
title_full Analisis Spektral Campuran Linier untuk Deteksi Tutupan Lahan di Daerah Perkotaan menggunakan Data Satelit Landsat ETM+ (Studi Kasus Kota Banjarbaru dan Sekitarnya)
title_fullStr Analisis Spektral Campuran Linier untuk Deteksi Tutupan Lahan di Daerah Perkotaan menggunakan Data Satelit Landsat ETM+ (Studi Kasus Kota Banjarbaru dan Sekitarnya)
title_full_unstemmed Analisis Spektral Campuran Linier untuk Deteksi Tutupan Lahan di Daerah Perkotaan menggunakan Data Satelit Landsat ETM+ (Studi Kasus Kota Banjarbaru dan Sekitarnya)
title_short Analisis Spektral Campuran Linier untuk Deteksi Tutupan Lahan di Daerah Perkotaan menggunakan Data Satelit Landsat ETM+ (Studi Kasus Kota Banjarbaru dan Sekitarnya)
title_sort analisis spektral campuran linier untuk deteksi tutupan lahan di daerah perkotaan menggunakan data satelit landsat etm studi kasus kota banjarbaru dan sekitarnya
topic mnf, ppi, endmember, linear spectral mixture analysis
url https://ppjp.ulm.ac.id/journal/index.php/f/article/view/3045
work_keys_str_mv AT nurlinanurlina analisisspektralcampuranlinieruntukdeteksitutupanlahandidaerahperkotaanmenggunakandatasatelitlandsatetmstudikasuskotabanjarbarudansekitarnya