A Model for the Estimation of the Residual Driving Range of Battery Electric Vehicles Including Battery Ageing, Thermal Effects and Auxiliaries

Sustainable mobility has recently become a priority of research for on-road vehicles. Shifting towards vehicle electrification is one of the most promising solutions concerning the reduction in pollutant emissions and greenhouse gases, especially for urban areas. Nevertheless, battery electric vehic...

Full description

Bibliographic Details
Main Authors: Gianmatteo Cannavacciuolo, Claudio Maino, Daniela Anna Misul, Ezio Spessa
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/19/9316
Description
Summary:Sustainable mobility has recently become a priority of research for on-road vehicles. Shifting towards vehicle electrification is one of the most promising solutions concerning the reduction in pollutant emissions and greenhouse gases, especially for urban areas. Nevertheless, battery electric vehicles might carry substantial limitations compared with other technologies. Specifically, the electric range could be highly affected by the ageing process, non-optimal thermal management of the battery and cabin conditioning. In this paper, a model for the estimation of the residual range of electric vehicles is proposed accounting for the influence of battery state of health, battery pack temperature, power consumption of the main vehicle auxiliaries, and battery pre-heating on the residual driving range. The results of the model application to an L7 battery electric vehicle highlighted that the electric range can be highly affected by several factors related to real-world driving conditions and can consistently differ from nominal values.
ISSN:2076-3417