Phytoplankton response to a plume front in the northern South China Sea

Due to a strong river discharge during April–June 2016, a persistent salinity front, with freshwater flushing seaward on the surface but seawater moving landward at the bottom, was formed in the coastal waters west of the Pearl River estuary (PRE) over the northern South China Sea (NSCS) shelf....

Full description

Bibliographic Details
Main Authors: Q. P. Li, W. Zhou, Y. Chen, Z. Wu
Format: Article
Language:English
Published: Copernicus Publications 2018-04-01
Series:Biogeosciences
Online Access:https://www.biogeosciences.net/15/2551/2018/bg-15-2551-2018.pdf
_version_ 1828384136640856064
author Q. P. Li
Q. P. Li
W. Zhou
W. Zhou
Y. Chen
Y. Chen
Z. Wu
author_facet Q. P. Li
Q. P. Li
W. Zhou
W. Zhou
Y. Chen
Y. Chen
Z. Wu
author_sort Q. P. Li
collection DOAJ
description Due to a strong river discharge during April–June 2016, a persistent salinity front, with freshwater flushing seaward on the surface but seawater moving landward at the bottom, was formed in the coastal waters west of the Pearl River estuary (PRE) over the northern South China Sea (NSCS) shelf. Hydrographic measurements revealed that the salinity front was influenced by both the river plume and coastal upwelling. On shipboard nutrient-enrichment experiments with size-fractionation chlorophyll <i>a</i> measurements were taken on both sides of the front as well as in the frontal zone to diagnose the spatial variations of phytoplankton physiology across the frontal system. We also assessed the size-fractionated responses of phytoplankton to the treatment of plume water at the frontal zone and the sea side of the front. The biological impact of vertical mixing or upwelling was further examined by the response of surface phytoplankton to the addition of local bottom water. Our results suggested that there was a large variation in phytoplankton physiology on the sea side of the front, driven by dynamic nutrient fluxes, although P limitation was prevailing on the shore side of the front and at the frontal zone. The spreading of plume water at the frontal zone would directly improve the growth of microphytoplankton, while nano- and picophytoplankton growths could have become saturated at high percentages of plume water. Also, the mixing of bottom water would stimulate the growth of surface phytoplankton on both sides of the front by altering the surface N∕P ratio to make it closer to the Redfield stoichiometry. In summary, phytoplankton growth and physiology could be profoundly influenced by the physical dynamics in the frontal system during the spring–summer of 2016.
first_indexed 2024-12-10T04:59:53Z
format Article
id doaj.art-d068fef61251440e8c9012a6424f8d3d
institution Directory Open Access Journal
issn 1726-4170
1726-4189
language English
last_indexed 2024-12-10T04:59:53Z
publishDate 2018-04-01
publisher Copernicus Publications
record_format Article
series Biogeosciences
spelling doaj.art-d068fef61251440e8c9012a6424f8d3d2022-12-22T02:01:26ZengCopernicus PublicationsBiogeosciences1726-41701726-41892018-04-01152551256310.5194/bg-15-2551-2018Phytoplankton response to a plume front in the northern South China SeaQ. P. Li0Q. P. Li1W. Zhou2W. Zhou3Y. Chen4Y. Chen5Z. Wu6South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, ChinaSouth China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, ChinaSouth China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, ChinaSouth China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, ChinaDue to a strong river discharge during April–June 2016, a persistent salinity front, with freshwater flushing seaward on the surface but seawater moving landward at the bottom, was formed in the coastal waters west of the Pearl River estuary (PRE) over the northern South China Sea (NSCS) shelf. Hydrographic measurements revealed that the salinity front was influenced by both the river plume and coastal upwelling. On shipboard nutrient-enrichment experiments with size-fractionation chlorophyll <i>a</i> measurements were taken on both sides of the front as well as in the frontal zone to diagnose the spatial variations of phytoplankton physiology across the frontal system. We also assessed the size-fractionated responses of phytoplankton to the treatment of plume water at the frontal zone and the sea side of the front. The biological impact of vertical mixing or upwelling was further examined by the response of surface phytoplankton to the addition of local bottom water. Our results suggested that there was a large variation in phytoplankton physiology on the sea side of the front, driven by dynamic nutrient fluxes, although P limitation was prevailing on the shore side of the front and at the frontal zone. The spreading of plume water at the frontal zone would directly improve the growth of microphytoplankton, while nano- and picophytoplankton growths could have become saturated at high percentages of plume water. Also, the mixing of bottom water would stimulate the growth of surface phytoplankton on both sides of the front by altering the surface N∕P ratio to make it closer to the Redfield stoichiometry. In summary, phytoplankton growth and physiology could be profoundly influenced by the physical dynamics in the frontal system during the spring–summer of 2016.https://www.biogeosciences.net/15/2551/2018/bg-15-2551-2018.pdf
spellingShingle Q. P. Li
Q. P. Li
W. Zhou
W. Zhou
Y. Chen
Y. Chen
Z. Wu
Phytoplankton response to a plume front in the northern South China Sea
Biogeosciences
title Phytoplankton response to a plume front in the northern South China Sea
title_full Phytoplankton response to a plume front in the northern South China Sea
title_fullStr Phytoplankton response to a plume front in the northern South China Sea
title_full_unstemmed Phytoplankton response to a plume front in the northern South China Sea
title_short Phytoplankton response to a plume front in the northern South China Sea
title_sort phytoplankton response to a plume front in the northern south china sea
url https://www.biogeosciences.net/15/2551/2018/bg-15-2551-2018.pdf
work_keys_str_mv AT qpli phytoplanktonresponsetoaplumefrontinthenorthernsouthchinasea
AT qpli phytoplanktonresponsetoaplumefrontinthenorthernsouthchinasea
AT wzhou phytoplanktonresponsetoaplumefrontinthenorthernsouthchinasea
AT wzhou phytoplanktonresponsetoaplumefrontinthenorthernsouthchinasea
AT ychen phytoplanktonresponsetoaplumefrontinthenorthernsouthchinasea
AT ychen phytoplanktonresponsetoaplumefrontinthenorthernsouthchinasea
AT zwu phytoplanktonresponsetoaplumefrontinthenorthernsouthchinasea