Heavy black hole effective theory

Abstract We formulate an effective field theory describing large mass scalars and fermions minimally coupled to gravity. The operators of this effective field theory are organized in powers of the transfer momentum divided by the mass of the matter field, an expansion which lends itself to the effic...

Full description

Bibliographic Details
Main Authors: Poul H. Damgaard, Kays Haddad, Andreas Helset
Format: Article
Language:English
Published: SpringerOpen 2019-11-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP11(2019)070
Description
Summary:Abstract We formulate an effective field theory describing large mass scalars and fermions minimally coupled to gravity. The operators of this effective field theory are organized in powers of the transfer momentum divided by the mass of the matter field, an expansion which lends itself to the efficient extraction of classical contributions from loop amplitudes in both the post-Newtonian and post-Minkowskian regimes. We use this effective field theory to calculate the classical and leading quantum gravitational scattering amplitude of two heavy spin-1/2 particles at the second post-Minkowskian order.
ISSN:1029-8479