Ionic Liquid Aqueous Two-Phase Systems for the Enhanced Paper-Based Detection of Transferrin and Escherichia coli
Aqueous two-phase systems (ATPSs) have been widely utilized for liquid-liquid extraction and purification of biomolecules, with some studies also demonstrating their capacity as a biomarker concentration technique for use in diagnostic settings. As the limited polarity range of conventional polymer-...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2018-10-01
|
Series: | Frontiers in Chemistry |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fchem.2018.00486/full |
_version_ | 1818036244720910336 |
---|---|
author | Matthew F. Yee Grace N. Emmel Eric J. Yang Eumene Lee Justin H. Paek Benjamin M. Wu Daniel T. Kamei |
author_facet | Matthew F. Yee Grace N. Emmel Eric J. Yang Eumene Lee Justin H. Paek Benjamin M. Wu Daniel T. Kamei |
author_sort | Matthew F. Yee |
collection | DOAJ |
description | Aqueous two-phase systems (ATPSs) have been widely utilized for liquid-liquid extraction and purification of biomolecules, with some studies also demonstrating their capacity as a biomarker concentration technique for use in diagnostic settings. As the limited polarity range of conventional polymer-based ATPSs can restrict their use, ionic liquid (IL)-based ATPSs have been recently proposed as a promising alternative to polymer-based ATPSs, since ILs are regarded as tunable solvents with excellent solvation capabilities for a variety of natural compounds and proteins. This study demonstrates the first application of IL ATPSs to point-of-care diagnostics. ATPSs consisting of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) and sodium phosphate salt were utilized to quickly concentrate biomarkers prior to detection using the lateral-flow immunoassay (LFA). We found the phase separation speed of the IL ATPS to be very rapid and a significant improvement upon the separation speed of both polymer-salt and micellar ATPSs. This system was successfully applied to both sandwich and competitive LFA formats and enhanced the detection of both Escherichia coli bacteria and the transferrin protein up to 8- and 20-fold, respectively. This system's compatibility with a broad range of biomolecules, rapid phase separation speed, and tunability suggest wide applicability for a large range of different antigens and biomarkers. |
first_indexed | 2024-12-10T07:07:52Z |
format | Article |
id | doaj.art-d0819ebfaded44fc8611bedeae5079c9 |
institution | Directory Open Access Journal |
issn | 2296-2646 |
language | English |
last_indexed | 2024-12-10T07:07:52Z |
publishDate | 2018-10-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Chemistry |
spelling | doaj.art-d0819ebfaded44fc8611bedeae5079c92022-12-22T01:58:08ZengFrontiers Media S.A.Frontiers in Chemistry2296-26462018-10-01610.3389/fchem.2018.00486402261Ionic Liquid Aqueous Two-Phase Systems for the Enhanced Paper-Based Detection of Transferrin and Escherichia coliMatthew F. Yee0Grace N. Emmel1Eric J. Yang2Eumene Lee3Justin H. Paek4Benjamin M. Wu5Daniel T. Kamei6Kamei Laboratory, UCLA, Department of Bioengineering, Los Angeles, CA, United StatesKamei Laboratory, UCLA, Department of Bioengineering, Los Angeles, CA, United StatesKamei Laboratory, UCLA, Department of Bioengineering, Los Angeles, CA, United StatesKamei Laboratory, UCLA, Department of Bioengineering, Los Angeles, CA, United StatesKamei Laboratory, UCLA, Department of Bioengineering, Los Angeles, CA, United StatesWu Laboratory, UCLA, Department of Bioengineering, Los Angeles, CA, United StatesKamei Laboratory, UCLA, Department of Bioengineering, Los Angeles, CA, United StatesAqueous two-phase systems (ATPSs) have been widely utilized for liquid-liquid extraction and purification of biomolecules, with some studies also demonstrating their capacity as a biomarker concentration technique for use in diagnostic settings. As the limited polarity range of conventional polymer-based ATPSs can restrict their use, ionic liquid (IL)-based ATPSs have been recently proposed as a promising alternative to polymer-based ATPSs, since ILs are regarded as tunable solvents with excellent solvation capabilities for a variety of natural compounds and proteins. This study demonstrates the first application of IL ATPSs to point-of-care diagnostics. ATPSs consisting of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) and sodium phosphate salt were utilized to quickly concentrate biomarkers prior to detection using the lateral-flow immunoassay (LFA). We found the phase separation speed of the IL ATPS to be very rapid and a significant improvement upon the separation speed of both polymer-salt and micellar ATPSs. This system was successfully applied to both sandwich and competitive LFA formats and enhanced the detection of both Escherichia coli bacteria and the transferrin protein up to 8- and 20-fold, respectively. This system's compatibility with a broad range of biomolecules, rapid phase separation speed, and tunability suggest wide applicability for a large range of different antigens and biomarkers.https://www.frontiersin.org/article/10.3389/fchem.2018.00486/fullionic liquidaqueous two-phase systemslateral-flow immunoassaytransferrinEscherichia coli |
spellingShingle | Matthew F. Yee Grace N. Emmel Eric J. Yang Eumene Lee Justin H. Paek Benjamin M. Wu Daniel T. Kamei Ionic Liquid Aqueous Two-Phase Systems for the Enhanced Paper-Based Detection of Transferrin and Escherichia coli Frontiers in Chemistry ionic liquid aqueous two-phase systems lateral-flow immunoassay transferrin Escherichia coli |
title | Ionic Liquid Aqueous Two-Phase Systems for the Enhanced Paper-Based Detection of Transferrin and Escherichia coli |
title_full | Ionic Liquid Aqueous Two-Phase Systems for the Enhanced Paper-Based Detection of Transferrin and Escherichia coli |
title_fullStr | Ionic Liquid Aqueous Two-Phase Systems for the Enhanced Paper-Based Detection of Transferrin and Escherichia coli |
title_full_unstemmed | Ionic Liquid Aqueous Two-Phase Systems for the Enhanced Paper-Based Detection of Transferrin and Escherichia coli |
title_short | Ionic Liquid Aqueous Two-Phase Systems for the Enhanced Paper-Based Detection of Transferrin and Escherichia coli |
title_sort | ionic liquid aqueous two phase systems for the enhanced paper based detection of transferrin and escherichia coli |
topic | ionic liquid aqueous two-phase systems lateral-flow immunoassay transferrin Escherichia coli |
url | https://www.frontiersin.org/article/10.3389/fchem.2018.00486/full |
work_keys_str_mv | AT matthewfyee ionicliquidaqueoustwophasesystemsfortheenhancedpaperbaseddetectionoftransferrinandescherichiacoli AT gracenemmel ionicliquidaqueoustwophasesystemsfortheenhancedpaperbaseddetectionoftransferrinandescherichiacoli AT ericjyang ionicliquidaqueoustwophasesystemsfortheenhancedpaperbaseddetectionoftransferrinandescherichiacoli AT eumenelee ionicliquidaqueoustwophasesystemsfortheenhancedpaperbaseddetectionoftransferrinandescherichiacoli AT justinhpaek ionicliquidaqueoustwophasesystemsfortheenhancedpaperbaseddetectionoftransferrinandescherichiacoli AT benjaminmwu ionicliquidaqueoustwophasesystemsfortheenhancedpaperbaseddetectionoftransferrinandescherichiacoli AT danieltkamei ionicliquidaqueoustwophasesystemsfortheenhancedpaperbaseddetectionoftransferrinandescherichiacoli |