Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$
Classical pattern avoidance and occurrence are well studied in the symmetric group $\mathcal{S}_{n}$. In this paper, we provide explicit recurrence relations to the generating functions counting the number of classical pattern occurrence in the set of 132-avoiding permutations and the set of 123-avo...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Discrete Mathematics & Theoretical Computer Science
2019-11-01
|
Series: | Discrete Mathematics & Theoretical Computer Science |
Subjects: | |
Online Access: | https://dmtcs.episciences.org/5088/pdf |
_version_ | 1797270036103036928 |
---|---|
author | Dun Qiu Jeffrey Remmel |
author_facet | Dun Qiu Jeffrey Remmel |
author_sort | Dun Qiu |
collection | DOAJ |
description | Classical pattern avoidance and occurrence are well studied in the symmetric
group $\mathcal{S}_{n}$. In this paper, we provide explicit recurrence
relations to the generating functions counting the number of classical pattern
occurrence in the set of 132-avoiding permutations and the set of 123-avoiding
permutations. |
first_indexed | 2024-04-25T01:57:53Z |
format | Article |
id | doaj.art-d0858b07159e49b5972fe8f5224c58ed |
institution | Directory Open Access Journal |
issn | 1365-8050 |
language | English |
last_indexed | 2024-04-25T01:57:53Z |
publishDate | 2019-11-01 |
publisher | Discrete Mathematics & Theoretical Computer Science |
record_format | Article |
series | Discrete Mathematics & Theoretical Computer Science |
spelling | doaj.art-d0858b07159e49b5972fe8f5224c58ed2024-03-07T15:38:27ZengDiscrete Mathematics & Theoretical Computer ScienceDiscrete Mathematics & Theoretical Computer Science1365-80502019-11-01Vol. 21 no. 2, Permutation...Permutation Patterns10.23638/DMTCS-21-2-45088Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$Dun QiuJeffrey RemmelClassical pattern avoidance and occurrence are well studied in the symmetric group $\mathcal{S}_{n}$. In this paper, we provide explicit recurrence relations to the generating functions counting the number of classical pattern occurrence in the set of 132-avoiding permutations and the set of 123-avoiding permutations.https://dmtcs.episciences.org/5088/pdfmathematics - combinatorics05a05, 05a10, 05a15, 05a19 |
spellingShingle | Dun Qiu Jeffrey Remmel Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$ Discrete Mathematics & Theoretical Computer Science mathematics - combinatorics 05a05, 05a10, 05a15, 05a19 |
title | Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$ |
title_full | Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$ |
title_fullStr | Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$ |
title_full_unstemmed | Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$ |
title_short | Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$ |
title_sort | classical pattern distributions in mathcal s n 132 and mathcal s n 123 |
topic | mathematics - combinatorics 05a05, 05a10, 05a15, 05a19 |
url | https://dmtcs.episciences.org/5088/pdf |
work_keys_str_mv | AT dunqiu classicalpatterndistributionsinmathcalsn132andmathcalsn123 AT jeffreyremmel classicalpatterndistributionsinmathcalsn132andmathcalsn123 |