Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$

Classical pattern avoidance and occurrence are well studied in the symmetric group $\mathcal{S}_{n}$. In this paper, we provide explicit recurrence relations to the generating functions counting the number of classical pattern occurrence in the set of 132-avoiding permutations and the set of 123-avo...

Full description

Bibliographic Details
Main Authors: Dun Qiu, Jeffrey Remmel
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2019-11-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/5088/pdf
_version_ 1797270036103036928
author Dun Qiu
Jeffrey Remmel
author_facet Dun Qiu
Jeffrey Remmel
author_sort Dun Qiu
collection DOAJ
description Classical pattern avoidance and occurrence are well studied in the symmetric group $\mathcal{S}_{n}$. In this paper, we provide explicit recurrence relations to the generating functions counting the number of classical pattern occurrence in the set of 132-avoiding permutations and the set of 123-avoiding permutations.
first_indexed 2024-04-25T01:57:53Z
format Article
id doaj.art-d0858b07159e49b5972fe8f5224c58ed
institution Directory Open Access Journal
issn 1365-8050
language English
last_indexed 2024-04-25T01:57:53Z
publishDate 2019-11-01
publisher Discrete Mathematics & Theoretical Computer Science
record_format Article
series Discrete Mathematics & Theoretical Computer Science
spelling doaj.art-d0858b07159e49b5972fe8f5224c58ed2024-03-07T15:38:27ZengDiscrete Mathematics & Theoretical Computer ScienceDiscrete Mathematics & Theoretical Computer Science1365-80502019-11-01Vol. 21 no. 2, Permutation...Permutation Patterns10.23638/DMTCS-21-2-45088Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$Dun QiuJeffrey RemmelClassical pattern avoidance and occurrence are well studied in the symmetric group $\mathcal{S}_{n}$. In this paper, we provide explicit recurrence relations to the generating functions counting the number of classical pattern occurrence in the set of 132-avoiding permutations and the set of 123-avoiding permutations.https://dmtcs.episciences.org/5088/pdfmathematics - combinatorics05a05, 05a10, 05a15, 05a19
spellingShingle Dun Qiu
Jeffrey Remmel
Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$
Discrete Mathematics & Theoretical Computer Science
mathematics - combinatorics
05a05, 05a10, 05a15, 05a19
title Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$
title_full Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$
title_fullStr Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$
title_full_unstemmed Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$
title_short Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$
title_sort classical pattern distributions in mathcal s n 132 and mathcal s n 123
topic mathematics - combinatorics
05a05, 05a10, 05a15, 05a19
url https://dmtcs.episciences.org/5088/pdf
work_keys_str_mv AT dunqiu classicalpatterndistributionsinmathcalsn132andmathcalsn123
AT jeffreyremmel classicalpatterndistributionsinmathcalsn132andmathcalsn123