Design, Implementation, and Optimization of Sliding Mode Controller for Automatic Voltage Regulator System

Academic studies on the Automatic Voltage Regulator (AVR) have focused on a linear mathematical model which lacks protective features. A more accurate model of the AVR system includes protective features as described in IEEE standards. The AVR models without protective features, namely limiters, res...

Full description

Bibliographic Details
Main Authors: Murat Furat, Gokcen Gidemen Cucu
Format: Article
Language:English
Published: IEEE 2022-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9780380/
_version_ 1811254637075890176
author Murat Furat
Gokcen Gidemen Cucu
author_facet Murat Furat
Gokcen Gidemen Cucu
author_sort Murat Furat
collection DOAJ
description Academic studies on the Automatic Voltage Regulator (AVR) have focused on a linear mathematical model which lacks protective features. A more accurate model of the AVR system includes protective features as described in IEEE standards. The AVR models without protective features, namely limiters, result in less accurate control performance since the outputs of real controllers are always bounded. In the present study, the controller outputs are limited between −0.9pu and 1.0pu, and the upper bound of exciter output is limited by 3.1pu with the direction of IEEE standards. The effect of limiters on the controller performance is investigated. Two controllers with a novel sliding surface function are proposed based on a mathematical model of the AVR and its approximate reduced-order model. The proposed controllers having only two parameters are optimized with improved particle swarm optimization (PSO) algorithm. After optimization, the robustness of the controllers is compared with the results of various operating conditions identical to the previous studies. Although controller inputs and exciter outputs are limited, the maximum overshoot is measured as less than 0.1% at no-load conditions. Nominal time constants of the AVR constituents are perturbed from −50% to 50%, and ±10% load disturbance is applied to the output. The robustness of the controllers against parameter uncertainties is measured with an average overshoot at the output. Another superiority among the reported results in the literature is obtained from the proposed controllers, where the minimum average overshoot rates are obtained. In addition, when ±10% load is applied to the output of the AVR, the proposed controllers generate accurate control inputs to reject the load disturbance successfully. Furthermore, the proposed controllers keep the output within the ±5% band if there is a monotonic change at the output. All the results show that the proposed controllers with the improved PSO have drawn the best performance from the perspective of time-domain specifications in comparison with the recently reported controllers.
first_indexed 2024-04-12T17:10:34Z
format Article
id doaj.art-d087b31da70c4d0e80430d269a85fbb6
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-04-12T17:10:34Z
publishDate 2022-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-d087b31da70c4d0e80430d269a85fbb62022-12-22T03:23:48ZengIEEEIEEE Access2169-35362022-01-0110556505567410.1109/ACCESS.2022.31776219780380Design, Implementation, and Optimization of Sliding Mode Controller for Automatic Voltage Regulator SystemMurat Furat0https://orcid.org/0000-0003-3179-5099Gokcen Gidemen Cucu1Electrical-Electronics Engineering Department, Iskenderun Technical University, Iskenderun, Hatay, TurkeyAtlas Energy Thermal Power Plant, Iskenderun, Hatay, TurkeyAcademic studies on the Automatic Voltage Regulator (AVR) have focused on a linear mathematical model which lacks protective features. A more accurate model of the AVR system includes protective features as described in IEEE standards. The AVR models without protective features, namely limiters, result in less accurate control performance since the outputs of real controllers are always bounded. In the present study, the controller outputs are limited between −0.9pu and 1.0pu, and the upper bound of exciter output is limited by 3.1pu with the direction of IEEE standards. The effect of limiters on the controller performance is investigated. Two controllers with a novel sliding surface function are proposed based on a mathematical model of the AVR and its approximate reduced-order model. The proposed controllers having only two parameters are optimized with improved particle swarm optimization (PSO) algorithm. After optimization, the robustness of the controllers is compared with the results of various operating conditions identical to the previous studies. Although controller inputs and exciter outputs are limited, the maximum overshoot is measured as less than 0.1% at no-load conditions. Nominal time constants of the AVR constituents are perturbed from −50% to 50%, and ±10% load disturbance is applied to the output. The robustness of the controllers against parameter uncertainties is measured with an average overshoot at the output. Another superiority among the reported results in the literature is obtained from the proposed controllers, where the minimum average overshoot rates are obtained. In addition, when ±10% load is applied to the output of the AVR, the proposed controllers generate accurate control inputs to reject the load disturbance successfully. Furthermore, the proposed controllers keep the output within the ±5% band if there is a monotonic change at the output. All the results show that the proposed controllers with the improved PSO have drawn the best performance from the perspective of time-domain specifications in comparison with the recently reported controllers.https://ieeexplore.ieee.org/document/9780380/Automatic voltage regulatorexcitation limiterparticle swarm optimizationrobust controlsliding mode control
spellingShingle Murat Furat
Gokcen Gidemen Cucu
Design, Implementation, and Optimization of Sliding Mode Controller for Automatic Voltage Regulator System
IEEE Access
Automatic voltage regulator
excitation limiter
particle swarm optimization
robust control
sliding mode control
title Design, Implementation, and Optimization of Sliding Mode Controller for Automatic Voltage Regulator System
title_full Design, Implementation, and Optimization of Sliding Mode Controller for Automatic Voltage Regulator System
title_fullStr Design, Implementation, and Optimization of Sliding Mode Controller for Automatic Voltage Regulator System
title_full_unstemmed Design, Implementation, and Optimization of Sliding Mode Controller for Automatic Voltage Regulator System
title_short Design, Implementation, and Optimization of Sliding Mode Controller for Automatic Voltage Regulator System
title_sort design implementation and optimization of sliding mode controller for automatic voltage regulator system
topic Automatic voltage regulator
excitation limiter
particle swarm optimization
robust control
sliding mode control
url https://ieeexplore.ieee.org/document/9780380/
work_keys_str_mv AT muratfurat designimplementationandoptimizationofslidingmodecontrollerforautomaticvoltageregulatorsystem
AT gokcengidemencucu designimplementationandoptimizationofslidingmodecontrollerforautomaticvoltageregulatorsystem