Lignocellulosic Membranes Grafted with <i>N</i>-Vinylcaprolactam Using Radiation Chemistry: Load and Release Capacity of Vancomycin

Radiation chemistry presents a unique avenue for developing innovative polymeric materials with desirable properties, eliminating the need for chemical initiators, which can be potentially detrimental, especially in sensitive sectors like medicine. In this investigation, we employed a radiation-indu...

Full description

Bibliographic Details
Main Authors: Maite Rentería-Urquiza, Guadalupe Gabriel Flores-Rojas, Belén Gómez-Lázaro, Felipe López-Saucedo, Ricardo Vera-Graziano, Eduardo Mendizabal, Emilio Bucio
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/16/4/551
Description
Summary:Radiation chemistry presents a unique avenue for developing innovative polymeric materials with desirable properties, eliminating the need for chemical initiators, which can be potentially detrimental, especially in sensitive sectors like medicine. In this investigation, we employed a radiation-induced graft polymerization process with N-vinylcaprolactam (NVCL) to modify lignocellulosic membranes derived from <i>Agave salmiana</i>, commonly known as maguey. The membranes underwent thorough characterization employing diverse techniques, including contact angle measurement, degree of swelling, scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier-transform infrared-attenuated total reflectance spectroscopy (FTIR-ATR), nuclear magnetic resonance (CP-MAS <sup>13</sup>C-NMR), X-ray photoelectron spectroscopy (XPS), and uniaxial tensile mechanical tests. The membranes’ ability to load and release an antimicrobial glycopeptide drug was assessed, revealing significant enhancements in both drug loading and sustained release. The grafting of PNVCL contributed to prolonged sustained release by decreasing the drug release rate at temperatures above the LCST. The release profiles were analyzed using the Higuchi, Peppas–Sahlin, and Korsmeyer–Peppas models, suggesting a Fickian transport mechanism as indicated by the Korsmeyer–Peppas model.
ISSN:2073-4360