Asymptotic Formula for the Moments of Takagi Function
Takagi function is a simple example of a continuous but nowhere differentiable function. It is defined by T(x) = ∞ ᢘ k=0 2−nρ(2nx), where ρ(x) = min k∈Z |x − k|. The moments of Takagi function are defined as Mn = ᝈ 1 0 xnT(x) dx. The main result of this paper is the following: Mn = lnn − Γ(1) − lnπ n...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Yaroslavl State University
2016-02-01
|
Series: | Моделирование и анализ информационных систем |
Subjects: | |
Online Access: | https://www.mais-journal.ru/jour/article/view/302 |
Summary: | Takagi function is a simple example of a continuous but nowhere differentiable function. It is defined by T(x) = ∞ ᢘ k=0 2−nρ(2nx), where ρ(x) = min k∈Z |x − k|. The moments of Takagi function are defined as Mn = ᝈ 1 0 xnT(x) dx. The main result of this paper is the following: Mn = lnn − Γ(1) − lnπ n2 ln 2 + 1 2n2 + 2 n2 ln 2 φ(n) + O(n−2.99), where φ(x) = ᝨ kᡘ=0 Γ ᝈ2πik ln 2 ζ ᡸ2πik ln 2 ᡸ x−2lπni2k . |
---|---|
ISSN: | 1818-1015 2313-5417 |