Asymptotic Formula for the Moments of Takagi Function

Takagi function is a simple example of a continuous but nowhere differentiable function. It is defined by T(x) = ∞ ᢘ k=0 2−nρ(2nx), where ρ(x) = min k∈Z |x − k|. The moments of Takagi function are defined as Mn = ᝈ 1 0  xnT(x) dx. The main result of this paper is the following: Mn = lnn − Γ᝘(1) − lnπ n...

Full description

Bibliographic Details
Main Author: E. A. Timofeev
Format: Article
Language:English
Published: Yaroslavl State University 2016-02-01
Series:Моделирование и анализ информационных систем
Subjects:
Online Access:https://www.mais-journal.ru/jour/article/view/302
Description
Summary:Takagi function is a simple example of a continuous but nowhere differentiable function. It is defined by T(x) = ∞ ᢘ k=0 2−nρ(2nx), where ρ(x) = min k∈Z |x − k|. The moments of Takagi function are defined as Mn = ᝈ 1 0  xnT(x) dx. The main result of this paper is the following: Mn = lnn − Γ᝘(1) − lnπ n2 ln 2  + 1 2n2 + 2 n2 ln 2 φ(n) + O(n−2.99), where φ(x) = ᝨ kᡘ=0 Γ ᝈ2πik  ln 2 ᣸ ζ ᡸ2πik ln 2  ᡸ x−2lπni2k .
ISSN:1818-1015
2313-5417