Asymptotic Formula for the Moments of Takagi Function
Takagi function is a simple example of a continuous but nowhere differentiable function. It is defined by T(x) = ∞ ᢘ k=0 2−nρ(2nx), where ρ(x) = min k∈Z |x − k|. The moments of Takagi function are defined as Mn = ᝈ 1 0 xnT(x) dx. The main result of this paper is the following: Mn = lnn − Γ(1) − lnπ n...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Yaroslavl State University
2016-02-01
|
Series: | Моделирование и анализ информационных систем |
Subjects: | |
Online Access: | https://www.mais-journal.ru/jour/article/view/302 |
_version_ | 1797877904257843200 |
---|---|
author | E. A. Timofeev |
author_facet | E. A. Timofeev |
author_sort | E. A. Timofeev |
collection | DOAJ |
description | Takagi function is a simple example of a continuous but nowhere differentiable function. It is defined by T(x) = ∞ ᢘ k=0 2−nρ(2nx), where ρ(x) = min k∈Z |x − k|. The moments of Takagi function are defined as Mn = ᝈ 1 0 xnT(x) dx. The main result of this paper is the following: Mn = lnn − Γ(1) − lnπ n2 ln 2 + 1 2n2 + 2 n2 ln 2 φ(n) + O(n−2.99), where φ(x) = ᝨ kᡘ=0 Γ ᝈ2πik ln 2 ζ ᡸ2πik ln 2 ᡸ x−2lπni2k . |
first_indexed | 2024-04-10T02:24:20Z |
format | Article |
id | doaj.art-d099007aa89a4831b27dc88fb853bb44 |
institution | Directory Open Access Journal |
issn | 1818-1015 2313-5417 |
language | English |
last_indexed | 2024-04-10T02:24:20Z |
publishDate | 2016-02-01 |
publisher | Yaroslavl State University |
record_format | Article |
series | Моделирование и анализ информационных систем |
spelling | doaj.art-d099007aa89a4831b27dc88fb853bb442023-03-13T08:07:34ZengYaroslavl State UniversityМоделирование и анализ информационных систем1818-10152313-54172016-02-0123151110.18255/1818-1015-2016-1-5-11278Asymptotic Formula for the Moments of Takagi FunctionE. A. Timofeev0Ярославский государственный университет им. П.Г. Демидова, ул. Советская, 14, г. Ярославль, 150000 РоссияTakagi function is a simple example of a continuous but nowhere differentiable function. It is defined by T(x) = ∞ ᢘ k=0 2−nρ(2nx), where ρ(x) = min k∈Z |x − k|. The moments of Takagi function are defined as Mn = ᝈ 1 0 xnT(x) dx. The main result of this paper is the following: Mn = lnn − Γ(1) − lnπ n2 ln 2 + 1 2n2 + 2 n2 ln 2 φ(n) + O(n−2.99), where φ(x) = ᝨ kᡘ=0 Γ ᝈ2πik ln 2 ζ ᡸ2πik ln 2 ᡸ x−2lπni2k .https://www.mais-journal.ru/jour/article/view/302моментысамо-подобиефункция такагисингулярная функцияпреобразование меллинаасимптотика |
spellingShingle | E. A. Timofeev Asymptotic Formula for the Moments of Takagi Function Моделирование и анализ информационных систем моменты само-подобие функция такаги сингулярная функция преобразование меллина асимптотика |
title | Asymptotic Formula for the Moments of Takagi Function |
title_full | Asymptotic Formula for the Moments of Takagi Function |
title_fullStr | Asymptotic Formula for the Moments of Takagi Function |
title_full_unstemmed | Asymptotic Formula for the Moments of Takagi Function |
title_short | Asymptotic Formula for the Moments of Takagi Function |
title_sort | asymptotic formula for the moments of takagi function |
topic | моменты само-подобие функция такаги сингулярная функция преобразование меллина асимптотика |
url | https://www.mais-journal.ru/jour/article/view/302 |
work_keys_str_mv | AT eatimofeev asymptoticformulaforthemomentsoftakagifunction |