Toeplitz Operators on Fock Space over <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">C</mi><mi mathvariant="bold-italic">n</mi></msup></semantics></math></inline-formula> with Invariant Symbols under the Action of the Unit Circle

The first goal of this paper is to find a representation of the Fock space on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">C</mi><mi>n</mi&...

Full description

Bibliographic Details
Main Authors: Carlos González-Flores, Luis Alfredo Dupont-García, Raquiel Rufino López-Martínez, Francisco Gabriel Hérnandez-Zamora
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/12/1080
_version_ 1797382064707731456
author Carlos González-Flores
Luis Alfredo Dupont-García
Raquiel Rufino López-Martínez
Francisco Gabriel Hérnandez-Zamora
author_facet Carlos González-Flores
Luis Alfredo Dupont-García
Raquiel Rufino López-Martínez
Francisco Gabriel Hérnandez-Zamora
author_sort Carlos González-Flores
collection DOAJ
description The first goal of this paper is to find a representation of the Fock space on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">C</mi><mi>n</mi></msup></semantics></math></inline-formula> in terms of the weighted Bergman spaces of the projective spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">CP</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>; i.e., every function in the Fock space can be written as a direct sum of elements in weighted Bergman space on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">CP</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>. Also, we study the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mo>*</mo></msup></semantics></math></inline-formula> algebras generated by Toeplitz operators where the symbols are taken from the following two families of functions: Firstly, the symbols depend on the moment map associated with the unit circle, and secondly, the symbols are invariant under the same action. Moreover, we analyze the commutative relations between these algebras, and we apply these results to find new commutative Banach algebras generated by Toeplitz operators on Fock space of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">C</mi><mi>n</mi></msup></semantics></math></inline-formula>.
first_indexed 2024-03-08T21:01:02Z
format Article
id doaj.art-d09beb38ece641d4a695ff1b5925b580
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-08T21:01:02Z
publishDate 2023-11-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-d09beb38ece641d4a695ff1b5925b5802023-12-22T13:53:11ZengMDPI AGAxioms2075-16802023-11-011212108010.3390/axioms12121080Toeplitz Operators on Fock Space over <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">C</mi><mi mathvariant="bold-italic">n</mi></msup></semantics></math></inline-formula> with Invariant Symbols under the Action of the Unit CircleCarlos González-Flores0Luis Alfredo Dupont-García1Raquiel Rufino López-Martínez2Francisco Gabriel Hérnandez-Zamora3Escuela Superior de Ingeniería Mecánica y Eléctrica Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, MexicoFacultad de Matemáticas, Universidad Veracruzana, Veracruz 94294, MexicoFacultad de Matemáticas, Universidad Veracruzana, Veracruz 94294, MexicoFacultad de Matemáticas, Universidad Veracruzana, Veracruz 94294, MexicoThe first goal of this paper is to find a representation of the Fock space on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">C</mi><mi>n</mi></msup></semantics></math></inline-formula> in terms of the weighted Bergman spaces of the projective spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">CP</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>; i.e., every function in the Fock space can be written as a direct sum of elements in weighted Bergman space on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">CP</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>. Also, we study the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mo>*</mo></msup></semantics></math></inline-formula> algebras generated by Toeplitz operators where the symbols are taken from the following two families of functions: Firstly, the symbols depend on the moment map associated with the unit circle, and secondly, the symbols are invariant under the same action. Moreover, we analyze the commutative relations between these algebras, and we apply these results to find new commutative Banach algebras generated by Toeplitz operators on Fock space of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">C</mi><mi>n</mi></msup></semantics></math></inline-formula>.https://www.mdpi.com/2075-1680/12/12/1080Toeplitz operatorsmoment maps<i>C</i>* algebrascommutative banach algebrasfock spaces
spellingShingle Carlos González-Flores
Luis Alfredo Dupont-García
Raquiel Rufino López-Martínez
Francisco Gabriel Hérnandez-Zamora
Toeplitz Operators on Fock Space over <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">C</mi><mi mathvariant="bold-italic">n</mi></msup></semantics></math></inline-formula> with Invariant Symbols under the Action of the Unit Circle
Axioms
Toeplitz operators
moment maps
<i>C</i>* algebras
commutative banach algebras
fock spaces
title Toeplitz Operators on Fock Space over <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">C</mi><mi mathvariant="bold-italic">n</mi></msup></semantics></math></inline-formula> with Invariant Symbols under the Action of the Unit Circle
title_full Toeplitz Operators on Fock Space over <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">C</mi><mi mathvariant="bold-italic">n</mi></msup></semantics></math></inline-formula> with Invariant Symbols under the Action of the Unit Circle
title_fullStr Toeplitz Operators on Fock Space over <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">C</mi><mi mathvariant="bold-italic">n</mi></msup></semantics></math></inline-formula> with Invariant Symbols under the Action of the Unit Circle
title_full_unstemmed Toeplitz Operators on Fock Space over <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">C</mi><mi mathvariant="bold-italic">n</mi></msup></semantics></math></inline-formula> with Invariant Symbols under the Action of the Unit Circle
title_short Toeplitz Operators on Fock Space over <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">C</mi><mi mathvariant="bold-italic">n</mi></msup></semantics></math></inline-formula> with Invariant Symbols under the Action of the Unit Circle
title_sort toeplitz operators on fock space over inline formula math display inline semantics msup mi mathvariant double struck c mi mi mathvariant bold italic n mi msup semantics math inline formula with invariant symbols under the action of the unit circle
topic Toeplitz operators
moment maps
<i>C</i>* algebras
commutative banach algebras
fock spaces
url https://www.mdpi.com/2075-1680/12/12/1080
work_keys_str_mv AT carlosgonzalezflores toeplitzoperatorsonfockspaceoverinlineformulamathdisplayinlinesemanticsmsupmimathvariantdoublestruckcmimimathvariantbolditalicnmimsupsemanticsmathinlineformulawithinvariantsymbolsundertheactionoftheunitcircle
AT luisalfredodupontgarcia toeplitzoperatorsonfockspaceoverinlineformulamathdisplayinlinesemanticsmsupmimathvariantdoublestruckcmimimathvariantbolditalicnmimsupsemanticsmathinlineformulawithinvariantsymbolsundertheactionoftheunitcircle
AT raquielrufinolopezmartinez toeplitzoperatorsonfockspaceoverinlineformulamathdisplayinlinesemanticsmsupmimathvariantdoublestruckcmimimathvariantbolditalicnmimsupsemanticsmathinlineformulawithinvariantsymbolsundertheactionoftheunitcircle
AT franciscogabrielhernandezzamora toeplitzoperatorsonfockspaceoverinlineformulamathdisplayinlinesemanticsmsupmimathvariantdoublestruckcmimimathvariantbolditalicnmimsupsemanticsmathinlineformulawithinvariantsymbolsundertheactionoftheunitcircle