Differentially private knowledge transfer for federated learning

Abstract Extracting useful knowledge from big data is important for machine learning. When data is privacy-sensitive and cannot be directly collected, federated learning is a promising option that extracts knowledge from decentralized data by learning and exchanging model parameters, rather than raw...

Description complète

Détails bibliographiques
Auteurs principaux: Tao Qi, Fangzhao Wu, Chuhan Wu, Liang He, Yongfeng Huang, Xing Xie
Format: Article
Langue:English
Publié: Nature Portfolio 2023-06-01
Collection:Nature Communications
Accès en ligne:https://doi.org/10.1038/s41467-023-38794-x