Hamiltanian minimum principle for optimum control of the distance learning process
A mathematical learning model based on control theory in the form of an inhomogeneous linear differential equation is proposed. Analytical formulas and graphs for optimal program control and optimal trajectory are obtained from the principle of the minimum of the Hamiltonian for autonomous systems.
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Belarusian National Technical University
2022-06-01
|
Series: | Sistemnyj Analiz i Prikladnaâ Informatika |
Subjects: | |
Online Access: | https://sapi.bntu.by/jour/article/view/553 |
_version_ | 1797873747001081856 |
---|---|
author | S. Ya. Zhukovich |
author_facet | S. Ya. Zhukovich |
author_sort | S. Ya. Zhukovich |
collection | DOAJ |
description | A mathematical learning model based on control theory in the form of an inhomogeneous linear differential equation is proposed. Analytical formulas and graphs for optimal program control and optimal trajectory are obtained from the principle of the minimum of the Hamiltonian for autonomous systems. |
first_indexed | 2024-04-10T01:20:03Z |
format | Article |
id | doaj.art-d09cf89add7948969e9fcc6e9ac80463 |
institution | Directory Open Access Journal |
issn | 2309-4923 2414-0481 |
language | English |
last_indexed | 2024-04-10T01:20:03Z |
publishDate | 2022-06-01 |
publisher | Belarusian National Technical University |
record_format | Article |
series | Sistemnyj Analiz i Prikladnaâ Informatika |
spelling | doaj.art-d09cf89add7948969e9fcc6e9ac804632023-03-13T09:47:42ZengBelarusian National Technical UniversitySistemnyj Analiz i Prikladnaâ Informatika2309-49232414-04812022-06-0101485010.21122/2309-4923-2022-1-48-50415Hamiltanian minimum principle for optimum control of the distance learning processS. Ya. Zhukovich0Борисовский государственный политехнический колледж - Филиал Белорусского национального технического университетаA mathematical learning model based on control theory in the form of an inhomogeneous linear differential equation is proposed. Analytical formulas and graphs for optimal program control and optimal trajectory are obtained from the principle of the minimum of the Hamiltonian for autonomous systems.https://sapi.bntu.by/jour/article/view/553математическая модель процесса дистанционного обучениятеория оптимального управления |
spellingShingle | S. Ya. Zhukovich Hamiltanian minimum principle for optimum control of the distance learning process Sistemnyj Analiz i Prikladnaâ Informatika математическая модель процесса дистанционного обучения теория оптимального управления |
title | Hamiltanian minimum principle for optimum control of the distance learning process |
title_full | Hamiltanian minimum principle for optimum control of the distance learning process |
title_fullStr | Hamiltanian minimum principle for optimum control of the distance learning process |
title_full_unstemmed | Hamiltanian minimum principle for optimum control of the distance learning process |
title_short | Hamiltanian minimum principle for optimum control of the distance learning process |
title_sort | hamiltanian minimum principle for optimum control of the distance learning process |
topic | математическая модель процесса дистанционного обучения теория оптимального управления |
url | https://sapi.bntu.by/jour/article/view/553 |
work_keys_str_mv | AT syazhukovich hamiltanianminimumprincipleforoptimumcontrolofthedistancelearningprocess |