Nickel—Alumina Catalysts for the Transformation of Vegetable Oils into Green Diesel: The Role of Preparation Method, Activation Temperature, and Reaction Conditions
Two nickel alumina catalysts containing 60 wt. % Ni were synthesized by wet impregnation and co-precipitation in order to study the effect of preparation methods on the catalytic efficiency concerning the transformation of sunflower oil into green diesel. The effect of activation temperature on the...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-02-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-4991/13/3/616 |
_version_ | 1827759725165412352 |
---|---|
author | Ioannis Nikolopoulos George Kogkos Vasiliki D. Tsavatopoulou Eleana Kordouli Kyriakos Bourikas Christos Kordulis Alexis Lycourghiotis |
author_facet | Ioannis Nikolopoulos George Kogkos Vasiliki D. Tsavatopoulou Eleana Kordouli Kyriakos Bourikas Christos Kordulis Alexis Lycourghiotis |
author_sort | Ioannis Nikolopoulos |
collection | DOAJ |
description | Two nickel alumina catalysts containing 60 wt. % Ni were synthesized by wet impregnation and co-precipitation in order to study the effect of preparation methods on the catalytic efficiency concerning the transformation of sunflower oil into green diesel. The effect of activation temperature on the catalytic efficiency of the most active catalyst was also studied. The catalysts were characterized using various techniques and which were evaluated in the aforementioned reaction using a semi-batch reactor. The catalyst prepared by co-precipitation exhibited a higher specific surface area and smaller mean crystal size of the nickel nanoparticle (higher nickel metallic surface). These justify its higher efficiency with respect to the corresponding catalyst synthesized by wet impregnation. The increase in the activation temperature from 400 to 600 °C increased the size of the nickel nanoparticles through sintering, thus destroying the small pores. These led to a decrease in the nickel surface and specific surface area and, thus, to a decrease in the catalytic efficiency. The optimization of the reaction conditions over the most active catalyst (prepared by co-precipitation and activated at 400 °C) leads to the complete transformation not only of the sunflower oil (edible oil) but also of waste cooking oil (non-edible oil) into green diesel. The liquid produced after the hydrotreatment for these two feedstocks for 7 h, at H<sub>2</sub> pressure 40 bar and temperature 350 °C using 100 mL of oil and 1 g of catalyst was composed of 97 and 96 wt. % of green diesel, respectively. |
first_indexed | 2024-03-11T09:31:47Z |
format | Article |
id | doaj.art-d09d84223e454b94aa1fce9bc06b579f |
institution | Directory Open Access Journal |
issn | 2079-4991 |
language | English |
last_indexed | 2024-03-11T09:31:47Z |
publishDate | 2023-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Nanomaterials |
spelling | doaj.art-d09d84223e454b94aa1fce9bc06b579f2023-11-16T17:37:22ZengMDPI AGNanomaterials2079-49912023-02-0113361610.3390/nano13030616Nickel—Alumina Catalysts for the Transformation of Vegetable Oils into Green Diesel: The Role of Preparation Method, Activation Temperature, and Reaction ConditionsIoannis Nikolopoulos0George Kogkos1Vasiliki D. Tsavatopoulou2Eleana Kordouli3Kyriakos Bourikas4Christos Kordulis5Alexis Lycourghiotis6Department of Chemistry, University of Patras, GR-26504 Patras, GreeceDepartment of Chemistry, University of Patras, GR-26504 Patras, GreeceDepartment of Chemistry, University of Patras, GR-26504 Patras, GreeceDepartment of Chemistry, University of Patras, GR-26504 Patras, GreeceSchool of Science and Technology, Hellenic Open University, Parodos Aristotelous 18, GR-26335 Patras, GreeceDepartment of Chemistry, University of Patras, GR-26504 Patras, GreeceDepartment of Chemistry, University of Patras, GR-26504 Patras, GreeceTwo nickel alumina catalysts containing 60 wt. % Ni were synthesized by wet impregnation and co-precipitation in order to study the effect of preparation methods on the catalytic efficiency concerning the transformation of sunflower oil into green diesel. The effect of activation temperature on the catalytic efficiency of the most active catalyst was also studied. The catalysts were characterized using various techniques and which were evaluated in the aforementioned reaction using a semi-batch reactor. The catalyst prepared by co-precipitation exhibited a higher specific surface area and smaller mean crystal size of the nickel nanoparticle (higher nickel metallic surface). These justify its higher efficiency with respect to the corresponding catalyst synthesized by wet impregnation. The increase in the activation temperature from 400 to 600 °C increased the size of the nickel nanoparticles through sintering, thus destroying the small pores. These led to a decrease in the nickel surface and specific surface area and, thus, to a decrease in the catalytic efficiency. The optimization of the reaction conditions over the most active catalyst (prepared by co-precipitation and activated at 400 °C) leads to the complete transformation not only of the sunflower oil (edible oil) but also of waste cooking oil (non-edible oil) into green diesel. The liquid produced after the hydrotreatment for these two feedstocks for 7 h, at H<sub>2</sub> pressure 40 bar and temperature 350 °C using 100 mL of oil and 1 g of catalyst was composed of 97 and 96 wt. % of green diesel, respectively.https://www.mdpi.com/2079-4991/13/3/616Ni catalystvegetable oil hydrodeoxygenationgreen dieselrenewable dieselbiofuel |
spellingShingle | Ioannis Nikolopoulos George Kogkos Vasiliki D. Tsavatopoulou Eleana Kordouli Kyriakos Bourikas Christos Kordulis Alexis Lycourghiotis Nickel—Alumina Catalysts for the Transformation of Vegetable Oils into Green Diesel: The Role of Preparation Method, Activation Temperature, and Reaction Conditions Nanomaterials Ni catalyst vegetable oil hydrodeoxygenation green diesel renewable diesel biofuel |
title | Nickel—Alumina Catalysts for the Transformation of Vegetable Oils into Green Diesel: The Role of Preparation Method, Activation Temperature, and Reaction Conditions |
title_full | Nickel—Alumina Catalysts for the Transformation of Vegetable Oils into Green Diesel: The Role of Preparation Method, Activation Temperature, and Reaction Conditions |
title_fullStr | Nickel—Alumina Catalysts for the Transformation of Vegetable Oils into Green Diesel: The Role of Preparation Method, Activation Temperature, and Reaction Conditions |
title_full_unstemmed | Nickel—Alumina Catalysts for the Transformation of Vegetable Oils into Green Diesel: The Role of Preparation Method, Activation Temperature, and Reaction Conditions |
title_short | Nickel—Alumina Catalysts for the Transformation of Vegetable Oils into Green Diesel: The Role of Preparation Method, Activation Temperature, and Reaction Conditions |
title_sort | nickel alumina catalysts for the transformation of vegetable oils into green diesel the role of preparation method activation temperature and reaction conditions |
topic | Ni catalyst vegetable oil hydrodeoxygenation green diesel renewable diesel biofuel |
url | https://www.mdpi.com/2079-4991/13/3/616 |
work_keys_str_mv | AT ioannisnikolopoulos nickelaluminacatalystsforthetransformationofvegetableoilsintogreendieseltheroleofpreparationmethodactivationtemperatureandreactionconditions AT georgekogkos nickelaluminacatalystsforthetransformationofvegetableoilsintogreendieseltheroleofpreparationmethodactivationtemperatureandreactionconditions AT vasilikidtsavatopoulou nickelaluminacatalystsforthetransformationofvegetableoilsintogreendieseltheroleofpreparationmethodactivationtemperatureandreactionconditions AT eleanakordouli nickelaluminacatalystsforthetransformationofvegetableoilsintogreendieseltheroleofpreparationmethodactivationtemperatureandreactionconditions AT kyriakosbourikas nickelaluminacatalystsforthetransformationofvegetableoilsintogreendieseltheroleofpreparationmethodactivationtemperatureandreactionconditions AT christoskordulis nickelaluminacatalystsforthetransformationofvegetableoilsintogreendieseltheroleofpreparationmethodactivationtemperatureandreactionconditions AT alexislycourghiotis nickelaluminacatalystsforthetransformationofvegetableoilsintogreendieseltheroleofpreparationmethodactivationtemperatureandreactionconditions |