Glutamine addiction in tumor cell: oncogene regulation and clinical treatment

Abstract  After undergoing metabolic reprogramming, tumor cells consume additional glutamine to produce amino acids, nucleotides, fatty acids, and other substances to facilitate their unlimited proliferation. As such, the metabolism of glutamine is intricately linked to the survival and progression...

Full description

Bibliographic Details
Main Authors: Xian Li, Xueqiang Peng, Yan Li, Shibo Wei, Guangpeng He, Jiaxing Liu, Xinyu Li, Shuo Yang, Dai Li, Weikai Lin, Jianjun Fang, Liang Yang, Hangyu Li
Format: Article
Language:English
Published: BMC 2024-01-01
Series:Cell Communication and Signaling
Subjects:
Online Access:https://doi.org/10.1186/s12964-023-01449-x
Description
Summary:Abstract  After undergoing metabolic reprogramming, tumor cells consume additional glutamine to produce amino acids, nucleotides, fatty acids, and other substances to facilitate their unlimited proliferation. As such, the metabolism of glutamine is intricately linked to the survival and progression of cancer cells. Consequently, targeting the glutamine metabolism presents a promising strategy to inhibit growth of tumor cell and cancer development. This review describes glutamine uptake, metabolism, and transport in tumor cells and its pivotal role in biosynthesis of amino acids, fatty acids, nucleotides, and more. Furthermore, we have also summarized the impact of oncogenes like C-MYC, KRAS, HIF, and p53 on the regulation of glutamine metabolism and the mechanisms through which glutamine triggers mTORC1 activation. In addition, role of different anti-cancer agents in targeting glutamine metabolism has been described and their prospective applications are assessed.
ISSN:1478-811X