Theoretical and numerical analysis of a degenerate nonlinear cubic Schrödinger equation

In this paper, we are interested in some theoretical and numerical studies of a special case of a degenerate nonlinear Schrödinger equation namely the so-called Gross-Pitaevskii Equation(GPE). More precisely, we will treat in a first time the well-posedness of GPE model with a degeneracy occurring i...

Full description

Bibliographic Details
Main Authors: Alahyane Mohamed, Chrifi Abderrazak, Echarroudi Younes
Format: Article
Language:English
Published: Sciendo 2022-05-01
Series:Moroccan Journal of Pure and Applied Analysis
Subjects:
Online Access:https://doi.org/10.2478/mjpaa-2022-0018
Description
Summary:In this paper, we are interested in some theoretical and numerical studies of a special case of a degenerate nonlinear Schrödinger equation namely the so-called Gross-Pitaevskii Equation(GPE). More precisely, we will treat in a first time the well-posedness of GPE model with a degeneracy occurring in the interior of the space variable domain, i.e ∃x0 ∈ (0, L), s. t k(x0) = 0, where k stands for the diffusion coefficient and L is a positive constant. Thereafter, we will focus ourselves on some numerical simulations showing the influence of a different parameters, especially the interior degeneracy, on the behavior of the wave solution corresponding to our model in a special case of the function k namely k(x) = |x − x0| α, α ∈ (0, 1).
ISSN:2351-8227