Theoretical and numerical analysis of a degenerate nonlinear cubic Schrödinger equation

In this paper, we are interested in some theoretical and numerical studies of a special case of a degenerate nonlinear Schrödinger equation namely the so-called Gross-Pitaevskii Equation(GPE). More precisely, we will treat in a first time the well-posedness of GPE model with a degeneracy occurring i...

Full description

Bibliographic Details
Main Authors: Alahyane Mohamed, Chrifi Abderrazak, Echarroudi Younes
Format: Article
Language:English
Published: Sciendo 2022-05-01
Series:Moroccan Journal of Pure and Applied Analysis
Subjects:
Online Access:https://doi.org/10.2478/mjpaa-2022-0018
_version_ 1828337488461037568
author Alahyane Mohamed
Chrifi Abderrazak
Echarroudi Younes
author_facet Alahyane Mohamed
Chrifi Abderrazak
Echarroudi Younes
author_sort Alahyane Mohamed
collection DOAJ
description In this paper, we are interested in some theoretical and numerical studies of a special case of a degenerate nonlinear Schrödinger equation namely the so-called Gross-Pitaevskii Equation(GPE). More precisely, we will treat in a first time the well-posedness of GPE model with a degeneracy occurring in the interior of the space variable domain, i.e ∃x0 ∈ (0, L), s. t k(x0) = 0, where k stands for the diffusion coefficient and L is a positive constant. Thereafter, we will focus ourselves on some numerical simulations showing the influence of a different parameters, especially the interior degeneracy, on the behavior of the wave solution corresponding to our model in a special case of the function k namely k(x) = |x − x0| α, α ∈ (0, 1).
first_indexed 2024-04-13T22:15:55Z
format Article
id doaj.art-d0b0a114e45948a19abad8d6781f12f3
institution Directory Open Access Journal
issn 2351-8227
language English
last_indexed 2024-04-13T22:15:55Z
publishDate 2022-05-01
publisher Sciendo
record_format Article
series Moroccan Journal of Pure and Applied Analysis
spelling doaj.art-d0b0a114e45948a19abad8d6781f12f32022-12-22T02:27:32ZengSciendoMoroccan Journal of Pure and Applied Analysis2351-82272022-05-018225627810.2478/mjpaa-2022-0018Theoretical and numerical analysis of a degenerate nonlinear cubic Schrödinger equationAlahyane Mohamed0Chrifi Abderrazak1Echarroudi Younes2L2EP, Faculty of Sciences and Technologies, University of Lille, 59655Villeneuve dAscq, France.Department of Mathematics, Faculty of Science and Technology, Cadi Ayyad University, B.P. 549, Av. Abdelkarim Elkhattabi, Guèliz, Marrakesh, 40000, Morocco.Laboratory of mathematics and population dynamics, Faculty of sciences Semlalia Marrakesh, Morocco.In this paper, we are interested in some theoretical and numerical studies of a special case of a degenerate nonlinear Schrödinger equation namely the so-called Gross-Pitaevskii Equation(GPE). More precisely, we will treat in a first time the well-posedness of GPE model with a degeneracy occurring in the interior of the space variable domain, i.e ∃x0 ∈ (0, L), s. t k(x0) = 0, where k stands for the diffusion coefficient and L is a positive constant. Thereafter, we will focus ourselves on some numerical simulations showing the influence of a different parameters, especially the interior degeneracy, on the behavior of the wave solution corresponding to our model in a special case of the function k namely k(x) = |x − x0| α, α ∈ (0, 1).https://doi.org/10.2478/mjpaa-2022-0018cubic schrödinger equationtime-dependent schrödinger equationinterior degeneracycranknicolson methodgalerkin method35k6535q4035q4135j1065p40
spellingShingle Alahyane Mohamed
Chrifi Abderrazak
Echarroudi Younes
Theoretical and numerical analysis of a degenerate nonlinear cubic Schrödinger equation
Moroccan Journal of Pure and Applied Analysis
cubic schrödinger equation
time-dependent schrödinger equation
interior degeneracy
cranknicolson method
galerkin method
35k65
35q40
35q41
35j10
65p40
title Theoretical and numerical analysis of a degenerate nonlinear cubic Schrödinger equation
title_full Theoretical and numerical analysis of a degenerate nonlinear cubic Schrödinger equation
title_fullStr Theoretical and numerical analysis of a degenerate nonlinear cubic Schrödinger equation
title_full_unstemmed Theoretical and numerical analysis of a degenerate nonlinear cubic Schrödinger equation
title_short Theoretical and numerical analysis of a degenerate nonlinear cubic Schrödinger equation
title_sort theoretical and numerical analysis of a degenerate nonlinear cubic schrodinger equation
topic cubic schrödinger equation
time-dependent schrödinger equation
interior degeneracy
cranknicolson method
galerkin method
35k65
35q40
35q41
35j10
65p40
url https://doi.org/10.2478/mjpaa-2022-0018
work_keys_str_mv AT alahyanemohamed theoreticalandnumericalanalysisofadegeneratenonlinearcubicschrodingerequation
AT chrifiabderrazak theoreticalandnumericalanalysisofadegeneratenonlinearcubicschrodingerequation
AT echarroudiyounes theoreticalandnumericalanalysisofadegeneratenonlinearcubicschrodingerequation