<i>q</i>-Analogs of <inline-formula><math display="inline"><semantics><mrow><msubsup><mi mathvariant="bold-italic">H</mi><mrow><mi mathvariant="bold-italic">n</mi><mo>,</mo><mi mathvariant="bold-italic">m</mi></mrow><mi mathvariant="bold-italic">r</mi></msubsup><mrow><mfenced open="(" close=")"><mi mathvariant="bold-italic">σ</mi></mfenced></mrow></mrow></semantics></math></inline-formula> and Their Applications

In this paper, inspired by recent works, we define <i>q</i>-analogs of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mrow><mi>n</mi><mo...

Full description

Bibliographic Details
Main Authors: Hao Guan, Sibel Koparal, Neşe Ömür, Waseem Ahmad Khan
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/19/4159
_version_ 1797575555463249920
author Hao Guan
Sibel Koparal
Neşe Ömür
Waseem Ahmad Khan
author_facet Hao Guan
Sibel Koparal
Neşe Ömür
Waseem Ahmad Khan
author_sort Hao Guan
collection DOAJ
description In this paper, inspired by recent works, we define <i>q</i>-analogs of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mfenced open="(" close=")"><mi>σ</mi></mfenced></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>H</mi><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow><mi>r</mi></msubsup><mfenced open="(" close=")"><mi>σ</mi></mfenced><mo>.</mo></mrow></semantics></math></inline-formula> By implementing them, we obtain new interesting results by taking the derivative or using generating functions.
first_indexed 2024-03-10T21:40:12Z
format Article
id doaj.art-d0bb3eb07b2649339935e8a91428d8de
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T21:40:12Z
publishDate 2023-10-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-d0bb3eb07b2649339935e8a91428d8de2023-11-19T14:44:09ZengMDPI AGMathematics2227-73902023-10-011119415910.3390/math11194159<i>q</i>-Analogs of <inline-formula><math display="inline"><semantics><mrow><msubsup><mi mathvariant="bold-italic">H</mi><mrow><mi mathvariant="bold-italic">n</mi><mo>,</mo><mi mathvariant="bold-italic">m</mi></mrow><mi mathvariant="bold-italic">r</mi></msubsup><mrow><mfenced open="(" close=")"><mi mathvariant="bold-italic">σ</mi></mfenced></mrow></mrow></semantics></math></inline-formula> and Their ApplicationsHao Guan0Sibel Koparal1Neşe Ömür2Waseem Ahmad Khan3Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, ChinaDepartment of Mathematics, Bursa Uludağ University, Bursa 16059, TurkeyDepartment of Mathematics, Kocaeli University, Kocaeli 41380, TurkeyDepartment of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar 31952, Saudi ArabiaIn this paper, inspired by recent works, we define <i>q</i>-analogs of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mfenced open="(" close=")"><mi>σ</mi></mfenced></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>H</mi><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow><mi>r</mi></msubsup><mfenced open="(" close=")"><mi>σ</mi></mfenced><mo>.</mo></mrow></semantics></math></inline-formula> By implementing them, we obtain new interesting results by taking the derivative or using generating functions.https://www.mdpi.com/2227-7390/11/19/4159alternative <i>q</i>-harmonic numbers<i>q</i>-polylogarithmsgeneralized <i>q</i>-hyperharmonic numbers of order <i>r</i>
spellingShingle Hao Guan
Sibel Koparal
Neşe Ömür
Waseem Ahmad Khan
<i>q</i>-Analogs of <inline-formula><math display="inline"><semantics><mrow><msubsup><mi mathvariant="bold-italic">H</mi><mrow><mi mathvariant="bold-italic">n</mi><mo>,</mo><mi mathvariant="bold-italic">m</mi></mrow><mi mathvariant="bold-italic">r</mi></msubsup><mrow><mfenced open="(" close=")"><mi mathvariant="bold-italic">σ</mi></mfenced></mrow></mrow></semantics></math></inline-formula> and Their Applications
Mathematics
alternative <i>q</i>-harmonic numbers
<i>q</i>-polylogarithms
generalized <i>q</i>-hyperharmonic numbers of order <i>r</i>
title <i>q</i>-Analogs of <inline-formula><math display="inline"><semantics><mrow><msubsup><mi mathvariant="bold-italic">H</mi><mrow><mi mathvariant="bold-italic">n</mi><mo>,</mo><mi mathvariant="bold-italic">m</mi></mrow><mi mathvariant="bold-italic">r</mi></msubsup><mrow><mfenced open="(" close=")"><mi mathvariant="bold-italic">σ</mi></mfenced></mrow></mrow></semantics></math></inline-formula> and Their Applications
title_full <i>q</i>-Analogs of <inline-formula><math display="inline"><semantics><mrow><msubsup><mi mathvariant="bold-italic">H</mi><mrow><mi mathvariant="bold-italic">n</mi><mo>,</mo><mi mathvariant="bold-italic">m</mi></mrow><mi mathvariant="bold-italic">r</mi></msubsup><mrow><mfenced open="(" close=")"><mi mathvariant="bold-italic">σ</mi></mfenced></mrow></mrow></semantics></math></inline-formula> and Their Applications
title_fullStr <i>q</i>-Analogs of <inline-formula><math display="inline"><semantics><mrow><msubsup><mi mathvariant="bold-italic">H</mi><mrow><mi mathvariant="bold-italic">n</mi><mo>,</mo><mi mathvariant="bold-italic">m</mi></mrow><mi mathvariant="bold-italic">r</mi></msubsup><mrow><mfenced open="(" close=")"><mi mathvariant="bold-italic">σ</mi></mfenced></mrow></mrow></semantics></math></inline-formula> and Their Applications
title_full_unstemmed <i>q</i>-Analogs of <inline-formula><math display="inline"><semantics><mrow><msubsup><mi mathvariant="bold-italic">H</mi><mrow><mi mathvariant="bold-italic">n</mi><mo>,</mo><mi mathvariant="bold-italic">m</mi></mrow><mi mathvariant="bold-italic">r</mi></msubsup><mrow><mfenced open="(" close=")"><mi mathvariant="bold-italic">σ</mi></mfenced></mrow></mrow></semantics></math></inline-formula> and Their Applications
title_short <i>q</i>-Analogs of <inline-formula><math display="inline"><semantics><mrow><msubsup><mi mathvariant="bold-italic">H</mi><mrow><mi mathvariant="bold-italic">n</mi><mo>,</mo><mi mathvariant="bold-italic">m</mi></mrow><mi mathvariant="bold-italic">r</mi></msubsup><mrow><mfenced open="(" close=")"><mi mathvariant="bold-italic">σ</mi></mfenced></mrow></mrow></semantics></math></inline-formula> and Their Applications
title_sort i q i analogs of inline formula math display inline semantics mrow msubsup mi mathvariant bold italic h mi mrow mi mathvariant bold italic n mi mo mo mi mathvariant bold italic m mi mrow mi mathvariant bold italic r mi msubsup mrow mfenced open close mi mathvariant bold italic σ mi mfenced mrow mrow semantics math inline formula and their applications
topic alternative <i>q</i>-harmonic numbers
<i>q</i>-polylogarithms
generalized <i>q</i>-hyperharmonic numbers of order <i>r</i>
url https://www.mdpi.com/2227-7390/11/19/4159
work_keys_str_mv AT haoguan iqianalogsofinlineformulamathdisplayinlinesemanticsmrowmsubsupmimathvariantbolditalichmimrowmimathvariantbolditalicnmimomomimathvariantbolditalicmmimrowmimathvariantbolditalicrmimsubsupmrowmfencedopenclosemimathvariantbolditalicsmimfencedmrowmrowsemantics
AT sibelkoparal iqianalogsofinlineformulamathdisplayinlinesemanticsmrowmsubsupmimathvariantbolditalichmimrowmimathvariantbolditalicnmimomomimathvariantbolditalicmmimrowmimathvariantbolditalicrmimsubsupmrowmfencedopenclosemimathvariantbolditalicsmimfencedmrowmrowsemantics
AT neseomur iqianalogsofinlineformulamathdisplayinlinesemanticsmrowmsubsupmimathvariantbolditalichmimrowmimathvariantbolditalicnmimomomimathvariantbolditalicmmimrowmimathvariantbolditalicrmimsubsupmrowmfencedopenclosemimathvariantbolditalicsmimfencedmrowmrowsemantics
AT waseemahmadkhan iqianalogsofinlineformulamathdisplayinlinesemanticsmrowmsubsupmimathvariantbolditalichmimrowmimathvariantbolditalicnmimomomimathvariantbolditalicmmimrowmimathvariantbolditalicrmimsubsupmrowmfencedopenclosemimathvariantbolditalicsmimfencedmrowmrowsemantics