<i>q</i>-Analogs of <inline-formula><math display="inline"><semantics><mrow><msubsup><mi mathvariant="bold-italic">H</mi><mrow><mi mathvariant="bold-italic">n</mi><mo>,</mo><mi mathvariant="bold-italic">m</mi></mrow><mi mathvariant="bold-italic">r</mi></msubsup><mrow><mfenced open="(" close=")"><mi mathvariant="bold-italic">σ</mi></mfenced></mrow></mrow></semantics></math></inline-formula> and Their Applications
In this paper, inspired by recent works, we define <i>q</i>-analogs of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mrow><mi>n</mi><mo...
Main Authors: | Hao Guan, Sibel Koparal, Neşe Ömür, Waseem Ahmad Khan |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-10-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/11/19/4159 |
Similar Items
-
Analytical Solutions for a New Form of the Generalized <i>q</i>-Deformed Sinh–Gordon Equation:<inline-formula><math display="inline"><semantics><mrow><mo> </mo><mfrac><mrow><msup><mo mathvariant="bold">∂</mo><mn mathvariant="bold">2</mn></msup><mi mathvariant="bold-italic">u</mi></mrow><mrow><mo mathvariant="bold">∂</mo><mi mathvariant="bold-italic">z</mi><mo mathvariant="bold">∂</mo><mi mathvariant="bold-italic">ζ</mi></mrow></mfrac><mo mathvariant="bold">=</mo><msup><mi mathvariant="bold-italic">e</mi><mrow><mi mathvariant="bold-italic">α</mi><mi mathvariant="bold-italic">u</mi></mrow></msup><msup><mrow><mo mathvariant="bold">[</mo><mi mathvariant="bold-italic">s</mi><mi mathvariant="bold-italic">i</mi><mi mathvariant="bold-italic">n</mi><msub><mi mathvariant="bold-italic">h</mi><mi mathvariant="bold-italic">q</mi></msub><mrow><mo mathvariant="bold">(</mo><msup><mi mathvariant="bold-italic">u</mi><mi mathvariant="bold-italic">γ</mi></msup><mo mathvariant="bold">)</mo></mrow><mo mathvariant="bold">]</mo></mrow><mi mathvariant="bold-italic">p</mi></msup><mo mathvariant="bold">−</mo><mi mathvariant="bold-italic">δ</mi></mrow></semantics></math></inline-formula>
by: Khalid K. Ali, et al.
Published: (2023-02-01) -
Newton’s Iteration Method for Solving the Nonlinear Matrix Equation <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="bold-italic">X</mi><mo mathvariant="bold">+</mo><msubsup><mo mathvariant="bold">∑</mo><mrow><mi mathvariant="bold-italic">i</mi><mo mathvariant="bold">=</mo><mn mathvariant="bold">1</mn></mrow><mi mathvariant="bold-italic">m</mi></msubsup><msubsup><mi mathvariant="bold-italic">A</mi><mrow><mi mathvariant="bold-italic">i</mi></mrow><mo mathvariant="bold">*</mo></msubsup><msup><mi mathvariant="bold-italic">X</mi><mrow><mo mathvariant="bold">−</mo><mn mathvariant="bold">1</mn></mrow></msup><msub><mi mathvariant="bold-italic">A</mi><mi mathvariant="bold-italic">i</mi></msub><mo mathvariant="bold">=</mo><mi mathvariant="bold-italic">Q</mi></mrow></semantics></math></inline-formula>
by: Chang-Zhou Li, et al.
Published: (2023-03-01) -
Approximation of Functions of the Classes <inline-formula><math display="inline"><semantics><mrow><msubsup><mi mathvariant="bold-italic">C</mi><mrow><mi mathvariant="bold-italic">β</mi></mrow><mi mathvariant="bold-italic">ψ</mi></msubsup><msup><mi mathvariant="bold-italic">H</mi><mi mathvariant="bold-italic">α</mi></msup></mrow></semantics></math></inline-formula> by Linear Methods Summation of Their Fourier Series
by: Yurii Kharkevych, et al.
Published: (2023-10-01) -
Energy Transfer in the <inline-formula><math display="inline"><semantics><mrow><msub><mrow><mi mathvariant="bold-italic">C</mi><mi mathvariant="bold-italic">a</mi><mi mathvariant="bold-italic">S</mi><mi mathvariant="bold-italic">O</mi></mrow><mrow><mn mathvariant="bold">4</mn></mrow></msub><mo mathvariant="bold">−</mo><mrow><mi mathvariant="bold-italic">D</mi><mi mathvariant="bold-italic">y</mi></mrow></mrow></semantics></math></inline-formula> Thermoluminescent Dosimeter from the Excited State of the <inline-formula><math display="inline"><semantics><mrow><msubsup><mrow><mi mathvariant="bold-italic">S</mi><mi mathvariant="bold-italic">O</mi></mrow><mrow><mn mathvariant="bold">4</mn></mrow><mrow><mn mathvariant="bold">2</mn><mo mathvariant="bold">−</mo></mrow></msubsup></mrow></semantics></math></inline-formula> Anionic Complex to the Impurities
by: Turlybek N. Nurakhmetov, et al.
Published: (2023-11-01) -
Weak Coupling Regime in Dilatonic <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="bold-italic">f</mi><mo mathvariant="bold">(</mo><mi mathvariant="bold-italic">R</mi><mo mathvariant="bold">,</mo><mi mathvariant="bold-italic">T</mi><mo mathvariant="bold">)</mo></mrow></semantics></math></inline-formula> Cosmology
by: Francisco A. Brito, et al.
Published: (2024-03-01)