Region-Based Hybrid Medical Image Watermarking Scheme for Robust and Secured Transmission in IoMT

With the growth in Internet and digital technology, Internet of Medical Things (IoMT) and Telemedicine have become buzzwords in healthcare. A large number of medical images and information is shared through a public network in these applications. This paper proposes a region-based hybrid Medical Ima...

Full description

Bibliographic Details
Main Authors: Priyanka Singh, K. Jyothsna Devi, Hiren Kumar Thakkar, Ketan Kotecha
Format: Article
Language:English
Published: IEEE 2022-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9682744/
Description
Summary:With the growth in Internet and digital technology, Internet of Medical Things (IoMT) and Telemedicine have become buzzwords in healthcare. A large number of medical images and information is shared through a public network in these applications. This paper proposes a region-based hybrid Medical Image Watermarking (MIW) scheme to ensure the authenticity, authorization, integrity, and confidentiality of the medical images transmitted through a public network in IoMT. In the proposed scheme, medical images are partitioned into Region of Interest (RoI) and Region of Non-Interest (RoNI). To ascertain integrity of RoI, tamper detection and recovery bits are embedded in RoI in the medical image. RoI is watermarked using adaptive Least Significant Bit (LSB) substitution with respect to the hiding capacity map for higher RoI imperceptibility and accuracy in tamper detection and recovery. Electronic Patient Record (EPR) is compressed using Huffman coding and encrypted using a pseudo-random key (secret key) to provide higher confidentiality and payload. QR code of hospital logo, Encrypted EPR, and RoI recovery bits are interleaved in RoNI using Discrete Wavelet Transform-Singular Value Decomposition (DWT-SVD) hybrid transforms to achieve a robust watermark. The proposed scheme is tested under various geometric and non-geometric attacks such as filtering, compression, rotation, salt and pepper noise and shearing. The evaluation results demonstrate that the proposed scheme has high imperceptibility, robustness, security, payload, tamper detection, and recovery accuracy under image processing attacks. Therefore, the proposed scheme can be used in the transmission of medical images and EPR in IoMT. Relevance of the proposed scheme is established by its superior performance in comparison to some of the popular existing schemes.
ISSN:2169-3536