Local Unitarity: a representation of differential cross-sections that is locally free of infrared singularities at any order
Abstract We propose a novel representation of differential scattering cross-sections that locally realises the direct cancellation of infrared singularities exhibited by its so-called real-emission and virtual degrees of freedom. We take advantage of the Loop-Tree Duality representation of each indi...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-04-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | https://doi.org/10.1007/JHEP04(2021)104 |
Summary: | Abstract We propose a novel representation of differential scattering cross-sections that locally realises the direct cancellation of infrared singularities exhibited by its so-called real-emission and virtual degrees of freedom. We take advantage of the Loop-Tree Duality representation of each individual forward-scattering diagram and we prove that the ensuing expression is locally free of infrared divergences, applies at any perturbative order and for any process without initial-state collinear singularities. Divergences for loop momenta with large magnitudes are regulated using local ultraviolet counterterms that reproduce the usual Lagrangian renormalisation procedure of quantum field theories. Our representation is especially suited for a numerical implementation and we demonstrate its practical potential by computing fully numerically and without any IR counterterm the next-to-leading order accurate differential cross-section for the process e + e − → d d ¯ $$ d\overline{d} $$ . We also show first results beyond next-to-leading order by computing interference terms part of the N4LO-accurate inclusive cross-section of a 1 → 2 + X scalar scattering process. |
---|---|
ISSN: | 1029-8479 |