A Bayesian Neo-Normal Mixture Model (Nenomimo) for MRI-Based Brain Tumor Segmentation
The detection of a brain tumor through magnetic resonance imaging (MRI) is still challenging when the image is in low quality. Image segmentation could be done to provide a clear brain tumor area as the region of interest. In this study, we propose an improved model-based clustering approach for MRI...
主要な著者: | Anindya Apriliyanti Pravitasari, Nur Iriawan, Kartika Fithriasari, Santi Wulan Purnami, Irhamah, Widiana Ferriastuti |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
MDPI AG
2020-07-01
|
シリーズ: | Applied Sciences |
主題: | |
オンライン・アクセス: | https://www.mdpi.com/2076-3417/10/14/4892 |
類似資料
-
A Bayesian Mixture Cure Rate Model for Estimating Short-Term and Long-Term Recidivism
著者:: Rolando de la Cruz, 等
出版事項: (2022-12-01) -
Nonparametric Bayesian Learning of Infinite Multivariate Generalized Normal Mixture Models and Its Applications
著者:: Sami Bourouis, 等
出版事項: (2021-06-01) -
Tehran Stock Exchange Return Forecasting: Comparison of Bayesian, Exponential Smoothing and Box Jenkins Approaches
著者:: Mojtaba Rostami, 等
出版事項: (2022-06-01) -
Composable Probabilistic Inference with Blaise
著者:: Bonawitz, Keith A
出版事項: (2008) -
On Finite and Non-Finite Bayesian Mixture Models
著者:: Sodiq Adejare Olanrewaju, 等
出版事項: (2023-12-01)