Major concerns of surface water quality in south-west coastal regions of Vietnamese Mekong Delta

Abstract This study aimed to appraise seasonal variations in surface water quality on the coasts of Southwestern Vietnam using entropy-weighted water quality index (EWQI) and multivariate statistics: cluster analysis (CA), principal component analysis (PCA), and discriminant analysis (DA). Forty-nin...

Full description

Bibliographic Details
Main Authors: Thanh Giao Nguyen, Kim Anh Phan, Thi Hong Nhien Huynh
Format: Article
Language:English
Published: BMC 2022-10-01
Series:Sustainable Environment Research
Subjects:
Online Access:https://doi.org/10.1186/s42834-022-00156-5
_version_ 1798028556115116032
author Thanh Giao Nguyen
Kim Anh Phan
Thi Hong Nhien Huynh
author_facet Thanh Giao Nguyen
Kim Anh Phan
Thi Hong Nhien Huynh
author_sort Thanh Giao Nguyen
collection DOAJ
description Abstract This study aimed to appraise seasonal variations in surface water quality on the coasts of Southwestern Vietnam using entropy-weighted water quality index (EWQI) and multivariate statistics: cluster analysis (CA), principal component analysis (PCA), and discriminant analysis (DA). Forty-nine samples monitored in Kien Giang province during the rainy and dry seasons were analysed for 16 physiochemical and biological parameters. Compared to the Vietnamese standard, surface water quality in the study areas was contaminated with organic matter (high biological oxygen demand and chemical oxygen demand), nutrients (high ammonium (NH4 +), nitrite, and orthophosphate), total suspended solids (TSS), iron (Fe), and coliform. Seasonal variations in surface water quality in the coastal regions were observed. TSS, organic matter and microbial problems in water bodies tend to be more serious in the rainy seasons due to an increase in water flow containing pollutants from upstream and wastes from regional human activities. Meanwhile, the salinity in the dry season (0–32‰) was greatly higher, which caused only 10% of samples to be suitable for irrigation. CA extracted 11 and 13 clusters from 49 locations in the dry and rainy seasons, respectively. Five principal components obtained from PCA can explain 74 and 70% of total water quality variations in dry and rainy seasons, respectively. Moreover, the results of PCA suggested that natural factors (hydrological regimes, temperature, rainfall, sea-level rise) and human sources (domestic, agriculture, industry, and tourism) are accountable for these fluctuations. DA extracted 7 parameters (pH, TSS, salinity, Fe, nitrate, NH4 +, and chloride) for leading the difference in water quality, with 88% of correct assignation. EWQI revealed that about 66% of total samples were classified as a very bad quality for drinking in the dry season. However, this ratio declined to 59% in the rainy season. Although the surface water quality was slightly improved during the rainy season, organic matter and microbial pollution need to be concerned. The findings of this study can provide insights into seasonal variations in surface water with the application of multivariate statistics and EWQI, which could support policymakers in developing water management strategies.
first_indexed 2024-04-11T19:11:10Z
format Article
id doaj.art-d13cfb2d0e8243f3b1179fd708fa17bc
institution Directory Open Access Journal
issn 2468-2039
language English
last_indexed 2024-04-11T19:11:10Z
publishDate 2022-10-01
publisher BMC
record_format Article
series Sustainable Environment Research
spelling doaj.art-d13cfb2d0e8243f3b1179fd708fa17bc2022-12-22T04:07:37ZengBMCSustainable Environment Research2468-20392022-10-0132111410.1186/s42834-022-00156-5Major concerns of surface water quality in south-west coastal regions of Vietnamese Mekong DeltaThanh Giao Nguyen0Kim Anh Phan1Thi Hong Nhien Huynh2College of Environment and Natural Resources, Can Tho UniversityCollege of Environment and Natural Resources, Can Tho UniversityCollege of Environment and Natural Resources, Can Tho UniversityAbstract This study aimed to appraise seasonal variations in surface water quality on the coasts of Southwestern Vietnam using entropy-weighted water quality index (EWQI) and multivariate statistics: cluster analysis (CA), principal component analysis (PCA), and discriminant analysis (DA). Forty-nine samples monitored in Kien Giang province during the rainy and dry seasons were analysed for 16 physiochemical and biological parameters. Compared to the Vietnamese standard, surface water quality in the study areas was contaminated with organic matter (high biological oxygen demand and chemical oxygen demand), nutrients (high ammonium (NH4 +), nitrite, and orthophosphate), total suspended solids (TSS), iron (Fe), and coliform. Seasonal variations in surface water quality in the coastal regions were observed. TSS, organic matter and microbial problems in water bodies tend to be more serious in the rainy seasons due to an increase in water flow containing pollutants from upstream and wastes from regional human activities. Meanwhile, the salinity in the dry season (0–32‰) was greatly higher, which caused only 10% of samples to be suitable for irrigation. CA extracted 11 and 13 clusters from 49 locations in the dry and rainy seasons, respectively. Five principal components obtained from PCA can explain 74 and 70% of total water quality variations in dry and rainy seasons, respectively. Moreover, the results of PCA suggested that natural factors (hydrological regimes, temperature, rainfall, sea-level rise) and human sources (domestic, agriculture, industry, and tourism) are accountable for these fluctuations. DA extracted 7 parameters (pH, TSS, salinity, Fe, nitrate, NH4 +, and chloride) for leading the difference in water quality, with 88% of correct assignation. EWQI revealed that about 66% of total samples were classified as a very bad quality for drinking in the dry season. However, this ratio declined to 59% in the rainy season. Although the surface water quality was slightly improved during the rainy season, organic matter and microbial pollution need to be concerned. The findings of this study can provide insights into seasonal variations in surface water with the application of multivariate statistics and EWQI, which could support policymakers in developing water management strategies.https://doi.org/10.1186/s42834-022-00156-5Water qualityEntropy-weighted water quality indexMultivariate statisticsCoastal regionMekong Delta
spellingShingle Thanh Giao Nguyen
Kim Anh Phan
Thi Hong Nhien Huynh
Major concerns of surface water quality in south-west coastal regions of Vietnamese Mekong Delta
Sustainable Environment Research
Water quality
Entropy-weighted water quality index
Multivariate statistics
Coastal region
Mekong Delta
title Major concerns of surface water quality in south-west coastal regions of Vietnamese Mekong Delta
title_full Major concerns of surface water quality in south-west coastal regions of Vietnamese Mekong Delta
title_fullStr Major concerns of surface water quality in south-west coastal regions of Vietnamese Mekong Delta
title_full_unstemmed Major concerns of surface water quality in south-west coastal regions of Vietnamese Mekong Delta
title_short Major concerns of surface water quality in south-west coastal regions of Vietnamese Mekong Delta
title_sort major concerns of surface water quality in south west coastal regions of vietnamese mekong delta
topic Water quality
Entropy-weighted water quality index
Multivariate statistics
Coastal region
Mekong Delta
url https://doi.org/10.1186/s42834-022-00156-5
work_keys_str_mv AT thanhgiaonguyen majorconcernsofsurfacewaterqualityinsouthwestcoastalregionsofvietnamesemekongdelta
AT kimanhphan majorconcernsofsurfacewaterqualityinsouthwestcoastalregionsofvietnamesemekongdelta
AT thihongnhienhuynh majorconcernsofsurfacewaterqualityinsouthwestcoastalregionsofvietnamesemekongdelta