Construction Strategy and Mechanism of a Novel Wood Preservative with Excellent Antifungal Effects

Wood is a naturally porous material prone to microbial erosion and degradation in outdoor environments. Therefore, the development of an environmentally friendly wood preservative with excellent antibacterial effects and low toxicity is urgently needed. In this study, nitrogen-doped carbon quantum d...

Full description

Bibliographic Details
Main Authors: Lei Wang, Teng Wang, Ruidi Hao, Yamei Wang
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/29/5/1013
Description
Summary:Wood is a naturally porous material prone to microbial erosion and degradation in outdoor environments. Therefore, the development of an environmentally friendly wood preservative with excellent antibacterial effects and low toxicity is urgently needed. In this study, nitrogen-doped carbon quantum dots (N-CQDs) with excellent antifungal performance and fluorescent properties were synthesized using a one-step hydrothermal method with chitosan quaternary ammonium salt (HACC) as the raw material. The fluorescence characteristics of N-CQD preservatives can help track their position and distribution in wood. The minimum inhibitory concentration (MIC) of N-CQDs is 1.8 mg/mL, which was nearly 22 times lower than that of HACC (40.0 mg/mL) in the PDA medium. The decay resistance test demonstrated that wood treated with N-CQDs showed a considerably reduced decay degree and its mass loss rate decreased from 46 ± 0.5% to 3.8 ± 0.5%. Biological transmission electron microscopy revealed that N-CQDs effectively destroyed fungal cell structures, thereby hindering the growth of <i>Coriolus versicolor</i>. N-CQDs synthesized using the one-step hydrothermal method can be used as an efficient wood preservative that can effectively improve the utilization and service life of wood.
ISSN:1420-3049