Geminin is required for the maintenance of pluripotency.
Pluripotency requires the expression of the three core transcriptions factors Oct4, Sox2 and Nanog, as well as further, complementary proteins. The geminin protein is part of this network, and was shown to play a role in the regulation of DNA replication, the control of the cell cycle, and the acqui...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2013-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3777968?pdf=render |
_version_ | 1818468541071884288 |
---|---|
author | Golnaz A Tabrizi Kerstin Böse Yvonne Reimann Michael Kessel |
author_facet | Golnaz A Tabrizi Kerstin Böse Yvonne Reimann Michael Kessel |
author_sort | Golnaz A Tabrizi |
collection | DOAJ |
description | Pluripotency requires the expression of the three core transcriptions factors Oct4, Sox2 and Nanog, as well as further, complementary proteins. The geminin protein is part of this network, and was shown to play a role in the regulation of DNA replication, the control of the cell cycle, and the acquisition of neural fate. It is highly expressed in the early embryo, in particular the epiblast and the early neural ectoderm, and also in pluripotent embryonic stem cells. The genetic inactivation of geminin resulted in lethality after the first few cell divisions, and thus prohibited the outgrowth of pluripotent cells. We established embryonic stem cells allowing the deletion of the geminin gene by induction of of Cre-recombinase with tamoxifen. Here, we show that geminin deficiency quickly leads to a loss of pluripotency, and to differentiation into the mesendodermal direction with high Oct4/low Sox2 levels. Simultaneous loss of geminin and induction of the neural lineage resulted in immediate apoptosis. These results suggested that in early development geminin functions via the co-expressed Sox2 gene. We found that the stem cell enhancer SRR2 of Sox2 is occupied by the activating esBAF complex in the presence of geminin, but becomes epigenetically repressed in its absence by the Polycomb repressive complex PRC2. The importance of geminin for Sox2 expression also explains the absolute requirement for geminin during the induction of pluripotency by OSKM viruses. In summary, geminin is required for Sox2 expression, and thus for the maintenance of totipotency, pluripotency and the early neural lineage. |
first_indexed | 2024-04-13T21:14:24Z |
format | Article |
id | doaj.art-d14a204baf514f8eb00ff254e477a59e |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-04-13T21:14:24Z |
publishDate | 2013-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-d14a204baf514f8eb00ff254e477a59e2022-12-22T02:29:45ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-0189e7382610.1371/journal.pone.0073826Geminin is required for the maintenance of pluripotency.Golnaz A TabriziKerstin BöseYvonne ReimannMichael KesselPluripotency requires the expression of the three core transcriptions factors Oct4, Sox2 and Nanog, as well as further, complementary proteins. The geminin protein is part of this network, and was shown to play a role in the regulation of DNA replication, the control of the cell cycle, and the acquisition of neural fate. It is highly expressed in the early embryo, in particular the epiblast and the early neural ectoderm, and also in pluripotent embryonic stem cells. The genetic inactivation of geminin resulted in lethality after the first few cell divisions, and thus prohibited the outgrowth of pluripotent cells. We established embryonic stem cells allowing the deletion of the geminin gene by induction of of Cre-recombinase with tamoxifen. Here, we show that geminin deficiency quickly leads to a loss of pluripotency, and to differentiation into the mesendodermal direction with high Oct4/low Sox2 levels. Simultaneous loss of geminin and induction of the neural lineage resulted in immediate apoptosis. These results suggested that in early development geminin functions via the co-expressed Sox2 gene. We found that the stem cell enhancer SRR2 of Sox2 is occupied by the activating esBAF complex in the presence of geminin, but becomes epigenetically repressed in its absence by the Polycomb repressive complex PRC2. The importance of geminin for Sox2 expression also explains the absolute requirement for geminin during the induction of pluripotency by OSKM viruses. In summary, geminin is required for Sox2 expression, and thus for the maintenance of totipotency, pluripotency and the early neural lineage.http://europepmc.org/articles/PMC3777968?pdf=render |
spellingShingle | Golnaz A Tabrizi Kerstin Böse Yvonne Reimann Michael Kessel Geminin is required for the maintenance of pluripotency. PLoS ONE |
title | Geminin is required for the maintenance of pluripotency. |
title_full | Geminin is required for the maintenance of pluripotency. |
title_fullStr | Geminin is required for the maintenance of pluripotency. |
title_full_unstemmed | Geminin is required for the maintenance of pluripotency. |
title_short | Geminin is required for the maintenance of pluripotency. |
title_sort | geminin is required for the maintenance of pluripotency |
url | http://europepmc.org/articles/PMC3777968?pdf=render |
work_keys_str_mv | AT golnazatabrizi gemininisrequiredforthemaintenanceofpluripotency AT kerstinbose gemininisrequiredforthemaintenanceofpluripotency AT yvonnereimann gemininisrequiredforthemaintenanceofpluripotency AT michaelkessel gemininisrequiredforthemaintenanceofpluripotency |