Structure and Dielectric Properties of V and Y Disorder Doped SrBi2Nb2O9 Ceramics

Y and V codoped SrBi 2Nb 2O 9 ceramics, which have been characterized by XRD, FTIR and SEM techniques, were prepared through molten salt using NaCl-KCl medium. Through X-ray diffraction analysis, all prepared samples were matched by undoped SrBi 2Nb 2O 9. The lattice parameters do not depend on the...

Full description

Bibliographic Details
Main Authors: Mohamed Afqir, Mohamed Elaatmani, Abdelouahad Zegzouti, Nabiha Tahiri, Mohamed Daoud
Format: Article
Language:English
Published: Polish Academy of Sciences 2022-11-01
Series:Archives of Metallurgy and Materials
Subjects:
Online Access:https://journals.pan.pl/Content/125091/PDF/AMM-2022-4-31-Afqir.pdf
Description
Summary:Y and V codoped SrBi 2Nb 2O 9 ceramics, which have been characterized by XRD, FTIR and SEM techniques, were prepared through molten salt using NaCl-KCl medium. Through X-ray diffraction analysis, all prepared samples were matched by undoped SrBi 2Nb 2O 9. The lattice parameters do not depend on the amount of dopants. Under the optimized experimental conditions, the compounds are composed of small crystallites of varying size and orientation, resulting in many micros train defects. FTIR spectra revealed that the dopant promotes a slight decrease in the 612 cm –1 band. A plate-like morphology was revealed by scanning electron microscopy, while Nyquist plots indicate non-Debye relaxation for all compounds. V and Y were incorporated into SrBi 2Nb 2O 9 lattice in order to reduce dielectric loss tangent. Thus, the codoping increases the of SrB 1.9Y 0.1Nb 1.95V 0.05O 9 (Y0.1V0.05) ceramic whereas, they were significantly decreased in the case of SrBi 1.8Y 0.2Nb 2O 9 (Y0.2) ceramic. Y0.1V0.05 sample makes up the highest efficient charge transfer, followed by Y0.2 sample representing the lowest.
ISSN:2300-1909