Harmonic Forcing from Distortion in a Boundary Layer Ingesting Fan

Integrating a fan with a boundary layer ingestion (BLI) configuration into an aircraft fuselage can improve propulsion efficiency by utilizing the lower momentum airflow in the boundary layer developed due to the surface drag of the fuselage. As a consequence, velocity and total pressure variations...

Full description

Bibliographic Details
Main Author: Hans Mårtensson
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Aerospace
Subjects:
Online Access:https://www.mdpi.com/2226-4310/8/3/58
_version_ 1827588469552054272
author Hans Mårtensson
author_facet Hans Mårtensson
author_sort Hans Mårtensson
collection DOAJ
description Integrating a fan with a boundary layer ingestion (BLI) configuration into an aircraft fuselage can improve propulsion efficiency by utilizing the lower momentum airflow in the boundary layer developed due to the surface drag of the fuselage. As a consequence, velocity and total pressure variations distort the flow field entering the fan in both the circumferential and radial directions. Such variations can negatively affect fan aerodynamics and give rise to vibration issues. A fan configuration to benefit from BLI needs to allow for distortion without large penalties. Full annulus unsteady computational fluid dynamics (CFD) with all blades and vanes is used to evaluate the effects on aerodynamic loading and forcing on a fan designed to be mounted on an adapted rear fuselage of a Fokker 100 aircraft, i.e., a tail cone thruster. The distortion pattern used as a boundary condition on the fan is taken from a CFD analysis of the whole aircraft with a simplified model of the installed fan. Detailed simulations of the fan are conducted to better understand the relation between ingested distortion and the harmonic forcing. The results suggest that the normalized harmonic forcing spectrum is primarily correlated to the circumferential variation of inlet total pressure. In this study, the evaluated harmonic forces correlate with the total pressure variation at the inlet for the first 12 engine orders, with some exceptions where the response is very low. At higher harmonics, the distortion content as well as the response become very low, with amplitudes in the order of magnitude lower than the principal disturbances. The change in harmonic forcing resulting from raising the working line, thus, increasing the incidence on the fan rotor, increases the forcing moderately. The distortion transfers through the fan resulting in a non-axisymmetric aerodynamic loading of the outlet guide vane (OGV) that has a clear effect on the aerodynamics. The time average aerodynamic load and also the harmonic forcing of the OGV vary strongly around the circumference. In particular, this is the case for some of the vanes at higher back pressure, most likely due to an interaction with separations starting to occur on vanes operating in unfavorable conditions.
first_indexed 2024-03-09T00:35:53Z
format Article
id doaj.art-d15ea62af730474b95f9f54f9d0e6d09
institution Directory Open Access Journal
issn 2226-4310
language English
last_indexed 2024-03-09T00:35:53Z
publishDate 2021-02-01
publisher MDPI AG
record_format Article
series Aerospace
spelling doaj.art-d15ea62af730474b95f9f54f9d0e6d092023-12-11T18:11:31ZengMDPI AGAerospace2226-43102021-02-01835810.3390/aerospace8030058Harmonic Forcing from Distortion in a Boundary Layer Ingesting FanHans Mårtensson0GKN Aerospace Engine Systems and KTH, S-461 81 Trollhättan, SwedenIntegrating a fan with a boundary layer ingestion (BLI) configuration into an aircraft fuselage can improve propulsion efficiency by utilizing the lower momentum airflow in the boundary layer developed due to the surface drag of the fuselage. As a consequence, velocity and total pressure variations distort the flow field entering the fan in both the circumferential and radial directions. Such variations can negatively affect fan aerodynamics and give rise to vibration issues. A fan configuration to benefit from BLI needs to allow for distortion without large penalties. Full annulus unsteady computational fluid dynamics (CFD) with all blades and vanes is used to evaluate the effects on aerodynamic loading and forcing on a fan designed to be mounted on an adapted rear fuselage of a Fokker 100 aircraft, i.e., a tail cone thruster. The distortion pattern used as a boundary condition on the fan is taken from a CFD analysis of the whole aircraft with a simplified model of the installed fan. Detailed simulations of the fan are conducted to better understand the relation between ingested distortion and the harmonic forcing. The results suggest that the normalized harmonic forcing spectrum is primarily correlated to the circumferential variation of inlet total pressure. In this study, the evaluated harmonic forces correlate with the total pressure variation at the inlet for the first 12 engine orders, with some exceptions where the response is very low. At higher harmonics, the distortion content as well as the response become very low, with amplitudes in the order of magnitude lower than the principal disturbances. The change in harmonic forcing resulting from raising the working line, thus, increasing the incidence on the fan rotor, increases the forcing moderately. The distortion transfers through the fan resulting in a non-axisymmetric aerodynamic loading of the outlet guide vane (OGV) that has a clear effect on the aerodynamics. The time average aerodynamic load and also the harmonic forcing of the OGV vary strongly around the circumference. In particular, this is the case for some of the vanes at higher back pressure, most likely due to an interaction with separations starting to occur on vanes operating in unfavorable conditions.https://www.mdpi.com/2226-4310/8/3/58fandistortionunsteady aerodynamicsaeromechanics
spellingShingle Hans Mårtensson
Harmonic Forcing from Distortion in a Boundary Layer Ingesting Fan
Aerospace
fan
distortion
unsteady aerodynamics
aeromechanics
title Harmonic Forcing from Distortion in a Boundary Layer Ingesting Fan
title_full Harmonic Forcing from Distortion in a Boundary Layer Ingesting Fan
title_fullStr Harmonic Forcing from Distortion in a Boundary Layer Ingesting Fan
title_full_unstemmed Harmonic Forcing from Distortion in a Boundary Layer Ingesting Fan
title_short Harmonic Forcing from Distortion in a Boundary Layer Ingesting Fan
title_sort harmonic forcing from distortion in a boundary layer ingesting fan
topic fan
distortion
unsteady aerodynamics
aeromechanics
url https://www.mdpi.com/2226-4310/8/3/58
work_keys_str_mv AT hansmartensson harmonicforcingfromdistortioninaboundarylayeringestingfan