Applications of (<i>h</i>,<i>q</i>)-Time Scale Calculus to the Solution of Partial Differential Equations <xref rid="fn1-csmf-2463464" ref-type="fn">†</xref>

In this article, we developed the idea of <i>q</i>-time scale calculus in quantum geometry. It includes the <i><i>q</i>-</i>time scale integral operators and<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline&qu...

Full description

Bibliographic Details
Main Authors: Hussain Ali, Ghulam Muhammad, Munawwar Ali Abbas
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Computer Sciences & Mathematics Forum
Subjects:
Online Access:https://www.mdpi.com/2813-0324/7/1/56
_version_ 1827575152780509184
author Hussain Ali
Ghulam Muhammad
Munawwar Ali Abbas
author_facet Hussain Ali
Ghulam Muhammad
Munawwar Ali Abbas
author_sort Hussain Ali
collection DOAJ
description In this article, we developed the idea of <i>q</i>-time scale calculus in quantum geometry. It includes the <i><i>q</i>-</i>time scale integral operators and<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><msub><mo>∆</mo><mi>q</mi></msub></mrow></semantics></math></inline-formula>-differentials. It analyzes the fundamental principles which follow the calculus of <i>q</i>-time scales compared with the Leibnitz–Newton usual calculus and have few crucial consequences. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>∆</mo><mi>q</mi></msub></mrow></semantics></math></inline-formula>-differential reduced method of transformations was proposed to work out on partial <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="sans-serif">Δ</mi><mi>q</mi></msub></mrow></semantics></math></inline-formula>-differential equations in time scale. With easily computable coefficients, the result is calculated in the version of a power series which is convergent. The performance and effectiveness of the proposed procedure are also illustrated, and Matlab software is applied for calculation with the support of some fascinating examples. It changes when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mi>t</mi></mrow></semantics></math></inline-formula> and <i>q</i> = 1; then, the solution merges with usual calculus for the mentioned initial value problem. The finding of the present work is that the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="sans-serif">Δ</mi><mi>q</mi></msub></mrow></semantics></math></inline-formula>-differential transformation reduced method is convenient and efficient.
first_indexed 2024-03-08T20:52:10Z
format Article
id doaj.art-d15f91afe59e4a98a82115a7d34fe62e
institution Directory Open Access Journal
issn 2813-0324
language English
last_indexed 2024-03-08T20:52:10Z
publishDate 2023-04-01
publisher MDPI AG
record_format Article
series Computer Sciences & Mathematics Forum
spelling doaj.art-d15f91afe59e4a98a82115a7d34fe62e2023-12-22T14:02:12ZengMDPI AGComputer Sciences & Mathematics Forum2813-03242023-04-01715610.3390/IOCMA2023-14388Applications of (<i>h</i>,<i>q</i>)-Time Scale Calculus to the Solution of Partial Differential Equations <xref rid="fn1-csmf-2463464" ref-type="fn">†</xref>Hussain Ali0Ghulam Muhammad1Munawwar Ali Abbas2Department of Mathematics, University of Baltistan, Skardu 16200, PakistanDepartment of Mathematics, University of Baltistan, Skardu 16200, PakistanDepartment of Mathematics, University of Baltistan, Skardu 16200, PakistanIn this article, we developed the idea of <i>q</i>-time scale calculus in quantum geometry. It includes the <i><i>q</i>-</i>time scale integral operators and<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><msub><mo>∆</mo><mi>q</mi></msub></mrow></semantics></math></inline-formula>-differentials. It analyzes the fundamental principles which follow the calculus of <i>q</i>-time scales compared with the Leibnitz–Newton usual calculus and have few crucial consequences. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>∆</mo><mi>q</mi></msub></mrow></semantics></math></inline-formula>-differential reduced method of transformations was proposed to work out on partial <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="sans-serif">Δ</mi><mi>q</mi></msub></mrow></semantics></math></inline-formula>-differential equations in time scale. With easily computable coefficients, the result is calculated in the version of a power series which is convergent. The performance and effectiveness of the proposed procedure are also illustrated, and Matlab software is applied for calculation with the support of some fascinating examples. It changes when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mi>t</mi></mrow></semantics></math></inline-formula> and <i>q</i> = 1; then, the solution merges with usual calculus for the mentioned initial value problem. The finding of the present work is that the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="sans-serif">Δ</mi><mi>q</mi></msub></mrow></semantics></math></inline-formula>-differential transformation reduced method is convenient and efficient.https://www.mdpi.com/2813-0324/7/1/56Δ<i>q</i>-differential<i><i>q</i>-</i>time scale<i>q</i>-Integral operatorsΔ<i>q</i>-differential reduced transform methodpartial differential equations
spellingShingle Hussain Ali
Ghulam Muhammad
Munawwar Ali Abbas
Applications of (<i>h</i>,<i>q</i>)-Time Scale Calculus to the Solution of Partial Differential Equations <xref rid="fn1-csmf-2463464" ref-type="fn">†</xref>
Computer Sciences & Mathematics Forum
Δ<i>q</i>-differential
<i><i>q</i>-</i>time scale
<i>q</i>-Integral operators
Δ<i>q</i>-differential reduced transform method
partial differential equations
title Applications of (<i>h</i>,<i>q</i>)-Time Scale Calculus to the Solution of Partial Differential Equations <xref rid="fn1-csmf-2463464" ref-type="fn">†</xref>
title_full Applications of (<i>h</i>,<i>q</i>)-Time Scale Calculus to the Solution of Partial Differential Equations <xref rid="fn1-csmf-2463464" ref-type="fn">†</xref>
title_fullStr Applications of (<i>h</i>,<i>q</i>)-Time Scale Calculus to the Solution of Partial Differential Equations <xref rid="fn1-csmf-2463464" ref-type="fn">†</xref>
title_full_unstemmed Applications of (<i>h</i>,<i>q</i>)-Time Scale Calculus to the Solution of Partial Differential Equations <xref rid="fn1-csmf-2463464" ref-type="fn">†</xref>
title_short Applications of (<i>h</i>,<i>q</i>)-Time Scale Calculus to the Solution of Partial Differential Equations <xref rid="fn1-csmf-2463464" ref-type="fn">†</xref>
title_sort applications of i h i i q i time scale calculus to the solution of partial differential equations xref rid fn1 csmf 2463464 ref type fn † xref
topic Δ<i>q</i>-differential
<i><i>q</i>-</i>time scale
<i>q</i>-Integral operators
Δ<i>q</i>-differential reduced transform method
partial differential equations
url https://www.mdpi.com/2813-0324/7/1/56
work_keys_str_mv AT hussainali applicationsofihiiqitimescalecalculustothesolutionofpartialdifferentialequationsxrefridfn1csmf2463464reftypefnxref
AT ghulammuhammad applicationsofihiiqitimescalecalculustothesolutionofpartialdifferentialequationsxrefridfn1csmf2463464reftypefnxref
AT munawwaraliabbas applicationsofihiiqitimescalecalculustothesolutionofpartialdifferentialequationsxrefridfn1csmf2463464reftypefnxref