An Invariant of Riemannian Type for Legendrian Warped Product Submanifolds of Sasakian Space Forms

In the present paper, we investigate the geometry and topology of warped product Legendrian submanifolds in Sasakian space forms <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvaria...

Full description

Bibliographic Details
Main Authors: Fatemah Abdullah Alghamdi, Lamia Saeed Alqahtani, Ali H. Alkhaldi, Akram Ali
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/23/4718
Description
Summary:In the present paper, we investigate the geometry and topology of warped product Legendrian submanifolds in Sasakian space forms <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="double-struck">D</mi><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>ϵ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and obtain the first Chen inequality that involves extrinsic invariants like the mean curvature and the length of the warping functions. This inequality also involves intrinsic invariants (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>-invariant and sectional curvature). In addition, an integral bound is provided for the Bochner operator formula of compact warped product submanifolds in terms of the gradient Ricci curvature. Some new results on mean curvature vanishing are presented as a partial solution to the well-known problem given by S.S. Chern.
ISSN:2227-7390