Increasing Hydrostatic Pressure Impacts the Prokaryotic Diversity during <i>Emiliania huxleyi</i> Aggregates Degradation

In the dark ocean, the balance between the heterotrophic carbon demand and the supply of sinking carbon through the biological carbon pump remains poorly constrained. In situ tracking of the dynamics of microbial degradation processes occurring on the gravitational sinking particles is still challen...

Full description

Bibliographic Details
Main Authors: Christian Tamburini, Marc Garel, Aude Barani, Dominique Boeuf, Patricia Bonin, Nagib Bhairy, Sophie Guasco, Stéphanie Jacquet, Frédéric A. C. Le Moigne, Christos Panagiotopoulos, Virginie Riou, Sandrine Veloso, Chiara Santinelli, Fabrice Armougom
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/13/19/2616
_version_ 1797515739448475648
author Christian Tamburini
Marc Garel
Aude Barani
Dominique Boeuf
Patricia Bonin
Nagib Bhairy
Sophie Guasco
Stéphanie Jacquet
Frédéric A. C. Le Moigne
Christos Panagiotopoulos
Virginie Riou
Sandrine Veloso
Chiara Santinelli
Fabrice Armougom
author_facet Christian Tamburini
Marc Garel
Aude Barani
Dominique Boeuf
Patricia Bonin
Nagib Bhairy
Sophie Guasco
Stéphanie Jacquet
Frédéric A. C. Le Moigne
Christos Panagiotopoulos
Virginie Riou
Sandrine Veloso
Chiara Santinelli
Fabrice Armougom
author_sort Christian Tamburini
collection DOAJ
description In the dark ocean, the balance between the heterotrophic carbon demand and the supply of sinking carbon through the biological carbon pump remains poorly constrained. In situ tracking of the dynamics of microbial degradation processes occurring on the gravitational sinking particles is still challenging. Our particle sinking simulator system (PASS) intends to mimic as closely as possible the in situ variations in pressure and temperature experienced by gravitational sinking particles. Here, we used the PASS to simultaneously track geochemical and microbial changes that occurred during the sinking through the mesopelagic zone of laboratory-grown <i>Emiliania huxleyi</i> aggregates amended by a natural microbial community sampled at 105 m depth in the North Atlantic Ocean. The impact of pressure on the prokaryotic degradation of POC and dissolution of <i>E. huxleyi</i>-derived calcite was not marked compared to atmospheric pressure. In contrast, using global O<sub>2</sub> consumption monitored in real-time inside the high-pressure bottles using planar optodes via a sapphire window, a reduction of respiration rate was recorded in surface-originated community assemblages under increasing pressure conditions. Moreover, using a 16S rRNA metabarcoding survey, we demonstrated a drastic difference in transcriptionally active prokaryotes associated with particles, incubated either at atmospheric pressure or under linearly increasing hydrostatic pressure conditions. The increase in hydrostatic pressure reduced both the phylogenetic diversity and the species richness. The incubation at atmospheric pressure, however, promoted an opportunistic community of “fast” degraders from the surface (<i>Saccharospirillaceae</i>, <i>Hyphomonadaceae,</i> and <i>Pseudoalteromonadaceae</i>), known to be associated with surface phytoplankton blooms. In contrast, the incubation under increasing pressure condition incubations revealed an increase in the particle colonizer families <i>Flavobacteriaceae</i> and <i>Rhodobacteraceae</i>, and also <i>Colwelliaceae,</i> which are known to be adapted to high hydrostatic pressure. Altogether, our results underline the need to perform biodegradation experiments of particles in conditions that mimic pressure and temperature encountered during their sinking along the water column to be ecologically relevant.
first_indexed 2024-03-10T06:49:36Z
format Article
id doaj.art-d167a2cf0a0e4c328ce631cb7ee80015
institution Directory Open Access Journal
issn 2073-4441
language English
last_indexed 2024-03-10T06:49:36Z
publishDate 2021-09-01
publisher MDPI AG
record_format Article
series Water
spelling doaj.art-d167a2cf0a0e4c328ce631cb7ee800152023-11-22T16:59:53ZengMDPI AGWater2073-44412021-09-011319261610.3390/w13192616Increasing Hydrostatic Pressure Impacts the Prokaryotic Diversity during <i>Emiliania huxleyi</i> Aggregates DegradationChristian Tamburini0Marc Garel1Aude Barani2Dominique Boeuf3Patricia Bonin4Nagib Bhairy5Sophie Guasco6Stéphanie Jacquet7Frédéric A. C. Le Moigne8Christos Panagiotopoulos9Virginie Riou10Sandrine Veloso11Chiara Santinelli12Fabrice Armougom13Aix Marseille Univ., Universite de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, FranceAix Marseille Univ., Universite de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, FranceAix Marseille Univ., Universite de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, FranceSorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650 Banyuls-sur-Mer, FranceAix Marseille Univ., Universite de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, FranceAix Marseille Univ., Universite de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, FranceAix Marseille Univ., Universite de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, FranceAix Marseille Univ., Universite de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, FranceAix Marseille Univ., Universite de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, FranceAix Marseille Univ., Universite de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, FranceAix Marseille Univ., Universite de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, FranceAix Marseille Univ., Universite de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, FranceC.N.R., Istituto di Biofisica, 56124 Pisa, ItalyAix Marseille Univ., Universite de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, FranceIn the dark ocean, the balance between the heterotrophic carbon demand and the supply of sinking carbon through the biological carbon pump remains poorly constrained. In situ tracking of the dynamics of microbial degradation processes occurring on the gravitational sinking particles is still challenging. Our particle sinking simulator system (PASS) intends to mimic as closely as possible the in situ variations in pressure and temperature experienced by gravitational sinking particles. Here, we used the PASS to simultaneously track geochemical and microbial changes that occurred during the sinking through the mesopelagic zone of laboratory-grown <i>Emiliania huxleyi</i> aggregates amended by a natural microbial community sampled at 105 m depth in the North Atlantic Ocean. The impact of pressure on the prokaryotic degradation of POC and dissolution of <i>E. huxleyi</i>-derived calcite was not marked compared to atmospheric pressure. In contrast, using global O<sub>2</sub> consumption monitored in real-time inside the high-pressure bottles using planar optodes via a sapphire window, a reduction of respiration rate was recorded in surface-originated community assemblages under increasing pressure conditions. Moreover, using a 16S rRNA metabarcoding survey, we demonstrated a drastic difference in transcriptionally active prokaryotes associated with particles, incubated either at atmospheric pressure or under linearly increasing hydrostatic pressure conditions. The increase in hydrostatic pressure reduced both the phylogenetic diversity and the species richness. The incubation at atmospheric pressure, however, promoted an opportunistic community of “fast” degraders from the surface (<i>Saccharospirillaceae</i>, <i>Hyphomonadaceae,</i> and <i>Pseudoalteromonadaceae</i>), known to be associated with surface phytoplankton blooms. In contrast, the incubation under increasing pressure condition incubations revealed an increase in the particle colonizer families <i>Flavobacteriaceae</i> and <i>Rhodobacteraceae</i>, and also <i>Colwelliaceae,</i> which are known to be adapted to high hydrostatic pressure. Altogether, our results underline the need to perform biodegradation experiments of particles in conditions that mimic pressure and temperature encountered during their sinking along the water column to be ecologically relevant.https://www.mdpi.com/2073-4441/13/19/2616biological carbon pumpcarbon cyclemesopelagicmineral ballastcoccolithophorid<i>Emiliania huxleyi</i>
spellingShingle Christian Tamburini
Marc Garel
Aude Barani
Dominique Boeuf
Patricia Bonin
Nagib Bhairy
Sophie Guasco
Stéphanie Jacquet
Frédéric A. C. Le Moigne
Christos Panagiotopoulos
Virginie Riou
Sandrine Veloso
Chiara Santinelli
Fabrice Armougom
Increasing Hydrostatic Pressure Impacts the Prokaryotic Diversity during <i>Emiliania huxleyi</i> Aggregates Degradation
Water
biological carbon pump
carbon cycle
mesopelagic
mineral ballast
coccolithophorid
<i>Emiliania huxleyi</i>
title Increasing Hydrostatic Pressure Impacts the Prokaryotic Diversity during <i>Emiliania huxleyi</i> Aggregates Degradation
title_full Increasing Hydrostatic Pressure Impacts the Prokaryotic Diversity during <i>Emiliania huxleyi</i> Aggregates Degradation
title_fullStr Increasing Hydrostatic Pressure Impacts the Prokaryotic Diversity during <i>Emiliania huxleyi</i> Aggregates Degradation
title_full_unstemmed Increasing Hydrostatic Pressure Impacts the Prokaryotic Diversity during <i>Emiliania huxleyi</i> Aggregates Degradation
title_short Increasing Hydrostatic Pressure Impacts the Prokaryotic Diversity during <i>Emiliania huxleyi</i> Aggregates Degradation
title_sort increasing hydrostatic pressure impacts the prokaryotic diversity during i emiliania huxleyi i aggregates degradation
topic biological carbon pump
carbon cycle
mesopelagic
mineral ballast
coccolithophorid
<i>Emiliania huxleyi</i>
url https://www.mdpi.com/2073-4441/13/19/2616
work_keys_str_mv AT christiantamburini increasinghydrostaticpressureimpactstheprokaryoticdiversityduringiemilianiahuxleyiiaggregatesdegradation
AT marcgarel increasinghydrostaticpressureimpactstheprokaryoticdiversityduringiemilianiahuxleyiiaggregatesdegradation
AT audebarani increasinghydrostaticpressureimpactstheprokaryoticdiversityduringiemilianiahuxleyiiaggregatesdegradation
AT dominiqueboeuf increasinghydrostaticpressureimpactstheprokaryoticdiversityduringiemilianiahuxleyiiaggregatesdegradation
AT patriciabonin increasinghydrostaticpressureimpactstheprokaryoticdiversityduringiemilianiahuxleyiiaggregatesdegradation
AT nagibbhairy increasinghydrostaticpressureimpactstheprokaryoticdiversityduringiemilianiahuxleyiiaggregatesdegradation
AT sophieguasco increasinghydrostaticpressureimpactstheprokaryoticdiversityduringiemilianiahuxleyiiaggregatesdegradation
AT stephaniejacquet increasinghydrostaticpressureimpactstheprokaryoticdiversityduringiemilianiahuxleyiiaggregatesdegradation
AT fredericaclemoigne increasinghydrostaticpressureimpactstheprokaryoticdiversityduringiemilianiahuxleyiiaggregatesdegradation
AT christospanagiotopoulos increasinghydrostaticpressureimpactstheprokaryoticdiversityduringiemilianiahuxleyiiaggregatesdegradation
AT virginieriou increasinghydrostaticpressureimpactstheprokaryoticdiversityduringiemilianiahuxleyiiaggregatesdegradation
AT sandrineveloso increasinghydrostaticpressureimpactstheprokaryoticdiversityduringiemilianiahuxleyiiaggregatesdegradation
AT chiarasantinelli increasinghydrostaticpressureimpactstheprokaryoticdiversityduringiemilianiahuxleyiiaggregatesdegradation
AT fabricearmougom increasinghydrostaticpressureimpactstheprokaryoticdiversityduringiemilianiahuxleyiiaggregatesdegradation