Stable voltage-controlled charge source circuit against capacitive loads and its application to synthetic admittance for piezoelectric shunt damping

This paper proposes a novel controlled charge source circuit for synthetic admittance of piezoelectric shunt damping system. A design method for the proposed charge source circuit is also proposed. By analyzing the stability of the charge source circuit itself in consideration of the dynamics of the...

Full description

Bibliographic Details
Main Authors: Hideyuki ICHIWARA, Kentaro TAKAGI, Kento OKUMURA, Toru IKEGAME
Format: Article
Language:Japanese
Published: The Japan Society of Mechanical Engineers 2018-06-01
Series:Nihon Kikai Gakkai ronbunshu
Subjects:
Online Access:https://www.jstage.jst.go.jp/article/transjsme/84/863/84_18-00046/_pdf/-char/en
Description
Summary:This paper proposes a novel controlled charge source circuit for synthetic admittance of piezoelectric shunt damping system. A design method for the proposed charge source circuit is also proposed. By analyzing the stability of the charge source circuit itself in consideration of the dynamics of the operational amplifier, this paper shows the conventional simple charge source circuit can be unstable because its minimum phase margin is extremely small. Moreover, we show that the minimum phase margin of the charge source circuit itself is greatly improved by the proposed method. In the case of the parameters of the experimental apparatus in this paper, the minimum phase margin is improved from less than 5 degrees to more than 75 degrees. Finally, we carry out the characterization of the developed circuit and shunt damping experiment in order to confirm the effectiveness of the proposed charge source circuit used as the synthetic admittance.
ISSN:2187-9761