Embryological observations on seed abortion in Hibiscus syriacus L. and physiological studies on nutrients, enzyme activity and endogenous hormones

Abstract Under natural conditions, most Hibiscus syriacus L. individuals form very few mature seeds or the mature seeds that do form are of poor quality. As a result, seed yield is poor and seeds have low natural germinability. These phenomena strongly hinder utilization of the excellent germplasm r...

Full description

Bibliographic Details
Main Authors: Xiaohong Wang, Jiajia Chen, Lingxuan Hu, Jingwen Zhang, Fen Xiao, Shengqian Zhang, Fengxia Shao, Liqun Huang
Format: Article
Language:English
Published: BMC 2023-12-01
Series:BMC Plant Biology
Subjects:
Online Access:https://doi.org/10.1186/s12870-023-04669-y
Description
Summary:Abstract Under natural conditions, most Hibiscus syriacus L. individuals form very few mature seeds or the mature seeds that do form are of poor quality. As a result, seed yield is poor and seeds have low natural germinability. These phenomena strongly hinder utilization of the excellent germplasm resources of H. syriacus. The study has shown that pollen activity and stigma receptivity were high on the day of anthesis, and the pistils and stamens were fertile. Pollen release and stigma receptivity were synchronous. But in styles following self and cross-pollination, pollen tube abnormalities (distortion and twisting of the pollen tubes) and callose deposition were observed. Cross-pollinated pollen tubes elongated faster and fewer pollen tube abnormalities were observed compared with self-pollinated pollen tubes. And during embryo development, abnormalities during the heart-shaped embryo stage led to embryo abortion. Imbalance in antioxidant enzyme activities and low contents of auxin and cytokinin during early stages of embryo development may affect embryo development. Therefore, a low frequency of outcrossing and mid-development embryo abortion may be important developmental causes of H. syriacus seed abortion. Nutrient deficiencies, imbalance in antioxidant enzyme activities, and a high content of abscisic acid at advanced stages of seed development may be physiological causes of seed abortion.
ISSN:1471-2229