Optimization of wood machining parameters in cnc routers: Taguchi orthogonal array based simulated angling algorithm

In the present study, two mathematical models were developed to optimize the surface roughness for machining condition of Cedar of Lebanon pine (Cedrus libani). Taguchi approach was applied to examine the effect of CNC processing variables. Quality characteristics parameters were selected as arithm...

Full description

Bibliographic Details
Main Authors: Ender Hazir, Kücük Hüseyin Koc
Format: Article
Language:English
Published: Universidad del Bío-Bío 2019-10-01
Series:Maderas: Ciencia y Tecnología
Subjects:
Online Access:https://revistas.ubiobio.cl/index.php/MCT/article/view/3651
_version_ 1797354768762404864
author Ender Hazir
Kücük Hüseyin Koc
author_facet Ender Hazir
Kücük Hüseyin Koc
author_sort Ender Hazir
collection DOAJ
description In the present study, two mathematical models were developed to optimize the surface roughness for machining condition of Cedar of Lebanon pine (Cedrus libani). Taguchi approach was applied to examine the effect of CNC processing variables. Quality characteristics parameters were selected as arithmetic average roughness (Ra) and average maximum height of the profile (Rz) for wood material. Analysis of variance (ANOVA) was used to determine effective machining parameters. Developed mathematical models using response surface methodology (RSM) were optimized by a combined approach of the Taguchi’s L27 orthogonal array based simulated angling algorithm (SA). Optimum machining levels for determining the minimum surface roughness values were carried out three stages. Firstly, the desirability function wasused to optimize the mathematical models. Secondly, the results obtained from the desirability function were selected as the initial point for the simulated angling algorithm. Finally, the optimum parameter values were obtained by using simulated angling algorithm. Minimum Ra value was obtained spindle speed of 17377 rpm, feed rate of 2.012 m/min, tool radius of 8 mm and depth of cut of 2.009 mm by using desirability function based simulated angling algorithm. For Rz these results were found as 16980 rpm, 2.004 m/min, 8.001mm and 2.003 mm. The R-square values of the Ra and Rz were 95.91 % and 96.12 %, respectively. The proposed models obtained the minimum surface roughness values and provided better results than the observed values.
first_indexed 2024-03-08T13:54:35Z
format Article
id doaj.art-d18e56b59cd741db941ab1ff3aab1aab
institution Directory Open Access Journal
issn 0717-3644
0718-221X
language English
last_indexed 2024-03-08T13:54:35Z
publishDate 2019-10-01
publisher Universidad del Bío-Bío
record_format Article
series Maderas: Ciencia y Tecnología
spelling doaj.art-d18e56b59cd741db941ab1ff3aab1aab2024-01-15T18:28:04ZengUniversidad del Bío-BíoMaderas: Ciencia y Tecnología0717-36440718-221X2019-10-012143651Optimization of wood machining parameters in cnc routers: Taguchi orthogonal array based simulated angling algorithmEnder HazirKücük Hüseyin Koc In the present study, two mathematical models were developed to optimize the surface roughness for machining condition of Cedar of Lebanon pine (Cedrus libani). Taguchi approach was applied to examine the effect of CNC processing variables. Quality characteristics parameters were selected as arithmetic average roughness (Ra) and average maximum height of the profile (Rz) for wood material. Analysis of variance (ANOVA) was used to determine effective machining parameters. Developed mathematical models using response surface methodology (RSM) were optimized by a combined approach of the Taguchi’s L27 orthogonal array based simulated angling algorithm (SA). Optimum machining levels for determining the minimum surface roughness values were carried out three stages. Firstly, the desirability function wasused to optimize the mathematical models. Secondly, the results obtained from the desirability function were selected as the initial point for the simulated angling algorithm. Finally, the optimum parameter values were obtained by using simulated angling algorithm. Minimum Ra value was obtained spindle speed of 17377 rpm, feed rate of 2.012 m/min, tool radius of 8 mm and depth of cut of 2.009 mm by using desirability function based simulated angling algorithm. For Rz these results were found as 16980 rpm, 2.004 m/min, 8.001mm and 2.003 mm. The R-square values of the Ra and Rz were 95.91 % and 96.12 %, respectively. The proposed models obtained the minimum surface roughness values and provided better results than the observed values. https://revistas.ubiobio.cl/index.php/MCT/article/view/3651Cedrus libaniresponse surface methodsoftwoodsurface roughnesswood material
spellingShingle Ender Hazir
Kücük Hüseyin Koc
Optimization of wood machining parameters in cnc routers: Taguchi orthogonal array based simulated angling algorithm
Maderas: Ciencia y Tecnología
Cedrus libani
response surface method
softwood
surface roughness
wood material
title Optimization of wood machining parameters in cnc routers: Taguchi orthogonal array based simulated angling algorithm
title_full Optimization of wood machining parameters in cnc routers: Taguchi orthogonal array based simulated angling algorithm
title_fullStr Optimization of wood machining parameters in cnc routers: Taguchi orthogonal array based simulated angling algorithm
title_full_unstemmed Optimization of wood machining parameters in cnc routers: Taguchi orthogonal array based simulated angling algorithm
title_short Optimization of wood machining parameters in cnc routers: Taguchi orthogonal array based simulated angling algorithm
title_sort optimization of wood machining parameters in cnc routers taguchi orthogonal array based simulated angling algorithm
topic Cedrus libani
response surface method
softwood
surface roughness
wood material
url https://revistas.ubiobio.cl/index.php/MCT/article/view/3651
work_keys_str_mv AT enderhazir optimizationofwoodmachiningparametersincncrouterstaguchiorthogonalarraybasedsimulatedanglingalgorithm
AT kucukhuseyinkoc optimizationofwoodmachiningparametersincncrouterstaguchiorthogonalarraybasedsimulatedanglingalgorithm