Puerarin Suppresses the Self-Renewal of Murine Embryonic Stem Cells by Inhibition of REST-MiR-21 Regulatory Pathway

Background/Aims: Puerarin shows a wide range of biological activities, including affecting the cardiac differentiation from murine embryonic stem (mES) cells. However, little is known about its effect and mechanism of action on the self-renewal of mES cells. This study aimed to determine the effect...

Full description

Bibliographic Details
Main Authors: Mengmeng Yin, Yin Yuan, Yurong Cui, Xian Hong, Hongyan Luo, Xinwu Hu, Ming Tang, Jurgen Hescheler, Jiaoya Xi
Format: Article
Language:English
Published: Cell Physiol Biochem Press GmbH & Co KG 2015-09-01
Series:Cellular Physiology and Biochemistry
Subjects:
Online Access:http://www.karger.com/Article/FullText/430374
Description
Summary:Background/Aims: Puerarin shows a wide range of biological activities, including affecting the cardiac differentiation from murine embryonic stem (mES) cells. However, little is known about its effect and mechanism of action on the self-renewal of mES cells. This study aimed to determine the effect of puerarin on the self-renewal and pluripotency of mES cells and its underlying mechanisms. Methods: RT-PCR and real-time PCR were used to detect the transcripts of core transcription factors, specific markers for multiple lineages, REST and microRNA-21 (miR-21). Colony-forming assay was performed to estimate the self-renewal capacity of mES cells. Western blotting and wortmannin were employed to explore the role of PI3K/Akt signaling pathway in the inhibitory action of puerarin on REST transcript. Transfected mES cells with antagomir21 were used to confirm the role of miR-21 in the action of puerarin on cell self-renewal. Results: Puerarin significantly decreased the percentage of the self-renewal colonies, and suppressed the transcripts of Oct4, Nanog, Sox2, c-Myc and REST. Besides, PECAM, NCAM and miR-21 were up-regulated both under the self-renewal conditions and at day 4 of differentiation. The PI3K inhibitor wortmannin successfully reversed the mRNA expression changes of REST, Nanog and Sox2. Transfection of antagomir21 efficiently reversed the effects of puerarin on mES cells self-renewal. Conclusion: Inhibition of REST-miR-21 regulatory pathway may be the key mechanism of puerarin-induced suppression of mES cells self-renewal.
ISSN:1015-8987
1421-9778